[1] | Chen, Y., et al., Beneficial effects of fluid resuscitation via the rectum on hemodynamic disorders and multiple organ injuries in an experimental severe acute pancreatitis model. Pancreatology, 2015. 15(6): p. 626-34. |
[2] | Agre, P., The aquaporin water channels. Proc Am Thorac Soc, 2006. 3(1): p. 5-13. |
[3] | Xie, R., et al., Fluid resuscitation via the rectum ameliorates hemodynamic disorders through adjusting aquaporin expression in an experimental severe acute pancreatitis model. Exp Ther Med, 2019. 17(1): p. 437-443. |
[4] | Agre, P., Aquaporin null phenotypes: The importance of classical physiology. Proceedings of the National Academy of Sciences, 1998. 95(16): p. 9061-9063. |
[5] | Preston, G.M., et al., Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 1992. 256(5055): p. 385-387. |
[6] | Brown, D., The Discovery of Water Channels (Aquaporins). Ann Nutr Metab, 2017. 70 Suppl 1: p. 37-42. |
[7] | Wu, B. and E. Beitz, Aquaporins with selectivity for unconventional permeants. Cellular and molecular life sciences, 2007. 64(18): p. 2413-2421. |
[8] | Tsukaguchi, H., et al., Molecular characterization of a broad selectivity neutral solute channel. Journal of Biological Chemistry, 1998. 273(38): p. 24737-24743. |
[9] | Carbrey, J.M., et al., Aquaglyceroporin AQP9: Solute permeation and metabolic control of expression in liver. Proceedings of the National Academy of Sciences, 2003. 100(5): p. 2945-2950. |
[10] | Sisto, M., D. Ribatti, and S. Lisi, Aquaporin water channels: New perspectives on the potential role in inflammation. 2019. |
[11] | Li, C. and W. Wang, Molecular biology of aquaporins, in Aquaporins. 2017, Springer. p. 1-34. |
[12] | Finn, R.N. and J. Cerda, Evolution and functional diversity of aquaporins. The Biological Bulletin, 2015. 229(1): p. 6-23. |
[13] | Ishibashi, K., Y. Morishita, and Y. Tanaka, The Evolutionary Aspects of Aquaporin Family. Adv Exp Med Biol, 2017. 969: p. 35-50. |
[14] | Ishibashi, K., New members of mammalian aquaporins: AQP10-AQP12. Handb Exp Pharmacol, 2009(190): p. 251-62. |
[15] | Kourghi, M., et al., Fundamental structural and functional properties of Aquaporin ion channels found across the kingdoms of life. Clin Exp Pharmacol Physiol, 2018. 45(4): p. 401-409. |
[16] | Magni, F., et al., Proteomic knowledge of human aquaporins. Proteomics, 2006. 6(20): p. 5637-5649. |
[17] | Gomes, A., et al., The emerging role of microRNAs in aquaporin regulation. Frontiers in chemistry, 2018. 6. |
[18] | Agre, P., et al., Aquaporin water channels–from atomic structure to clinical medicine. The Journal of physiology, 2002. 542(1): p. 3-16. |
[19] | Yasui, M., et al., Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia. Proceedings of the National Academy of Sciences, 1999. 96(10): p. 5808-5813. |
[20] | Ishibashi, K., et al., Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A, 1994. 91(14): p. 6269-73. |
[21] | Ishibashi, K., Y. Tanaka, and Y. Morishita, The role of mammalian superaquaporins inside the cell. Biochim Biophys Acta, 2014. 1840(5): p. 1507-12. |
[22] | Brown, D., et al., Cellular distribution of the aquaporins: a family of water channel proteins. Histochemistry and cell biology, 1995. 104(1): p. 1-9. |
[23] | Laforenza, U., Water channel proteins in the gastrointestinal tract. Molecular aspects of medicine, 2012. 33(5-6): p. 642-650. |
[24] | Pelagalli, A., et al., Expression and Localization of Aquaporin 4 and Aquaporin 5 along the Large Intestine of Colostrum-Suckling Buffalo Calves. Anatomia, histologia, embryologia, 2016. 45(6): p. 418-427. |
[25] | Meli, R., C. Pirozzi, and A. Pelagalli, New perspectives on the potential role of aquaporins (AQPs) in the physiology of inflammation. Frontiers in physiology, 2018. 9: p. 101. |
[26] | Liao, S., et al., The regulatory roles of aquaporins in the digestive system. Genes & Diseases, 2020. |
[27] | Fischer, H., et al., Differential expression of aquaporin 8 in human colonic epithelial cells and colorectal tumors. BMC Physiol, 2001. 1: p. 1. |
[28] | Worman, H.J. and M. Field, Osmotic water permeability of small intestinal brush-border membranes. J Membr Biol, 1985. 87(3): p. 233-9. |
[29] | Verkman, A., Aquaporin water channels and endothelial cell function. Journal of anatomy, 2002. 200(6): p. 617-627. |
[30] | Kagnoff, M.F., The intestinal epithelium is an integral component of a communications network. The Journal of clinical investigation, 2014. 124(7): p. 2841-2843. |
[31] | Zhu, C., Z. Chen, and Z. Jiang, Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines. International journal of molecular sciences, 2016. 17(9): p. 1399. |
[32] | Masyuk, A.I., R.A. Marinelli, and N.F. LaRusso, Water transport by epithelia of the digestive tract. Gastroenterology, 2002. 122(2): p. 545-62. |
[33] | Thiagarajah, J.R. and A.S. Verkman, Water transport in the gastrointestinal tract, in Physiology of the gastrointestinal tract. 2018, Elsevier. p. 1249-1272. |
[34] | Ma, T. and A. Verkman, Aquaporin water channels in gastrointestinal physiology. The Journal of Physiology, 1999. 517(2): p. 317-326. |
[35] | Mobasheri, A. and D. Marples, Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. American Journal of Physiology-Cell Physiology, 2004. |
[36] | Ricanek, P., et al., Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clinical and experimental gastroenterology, 2015. 8: p. 49. |
[37] | Okada, S., et al., Aquaporin-9 is expressed in a mucus-secreting goblet cell subset in the small intestine. FEBS Letters, 2003. 540(1): p. 157-162. |
[38] | Mobasheri, A., M. Shakibaei, and D. Marples, Immunohistochemical localization of aquaporin 10 in the apical membranes of the human ileum: a potential pathway for luminal water and small solute absorption. Histochemistry and cell biology, 2004. 121(6): p. 463-471. |
[39] | Hatakeyama, S., et al., Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochemical and biophysical research communications, 2001. 287(4): p. 814-819. |
[40] | Tritto, S., et al., Osmotic water permeability of rat intestinal brush border membrane vesicles: involvement of aquaporin-7 and aquaporin-8 and effect of metal ions. Biochem Cell Biol, 2007. 85(6): p. 675-84. |
[41] | King, L.S., M. Yasui, and P. Agre, Aquaporins in health and disease. Molecular medicine today, 2000. 6(2): p. 60-65. |
[42] | Moon, C., et al., Involvement of aquaporins in colorectal carcinogenesis. Oncogene, 2003. 22(43): p. 6699-6703. |
[43] | Laforenza, U., Water channel proteins in the gastrointestinal tract. Molecular Aspects of Medicine, 2012. 33(5): p. 642-650. |
[44] | Mobasheri, A., S. Wray, and D. Marples, Distribution of AQP2 and AQP3 water channels in human tissue microarrays. Journal of Molecular Histology, 2005. 36(1): p. 1. |
[45] | Silberstein, C., et al., Functional characterization and localization of AQP3 in the human colon. Brazilian Journal of Medical and Biological Research, 1999. 32(10): p. 1303-1313. |
[46] | Ikarashi, N., et al., Inhibition of aquaporin-3 water channel in the colon induces diarrhea. Biological and Pharmaceutical Bulletin, 2012. 35(6): p. 957-962. |
[47] | Bottino, C., et al., Impaired aquaporins expression in the gastrointestinal tract of rat after mercury exposure. J Appl Toxicol, 2016. 36(1): p. 113-20. |
[48] | Laforenza, U., Water channel proteins in the gastrointestinal tract. Mol Aspects Med, 2012. 33(5-6): p. 642-50. |
[49] | Hamid, H., et al., MORBIDITY AND MORTALITIES BY ROTAVIRUS: REVIEW FOR STRATEGIC MEASURES. Pakistan Armed Forces Medical Journal, 2019. 69(5): p. 1149-53. |
[50] | Zhang, D., et al., Aquaporin-3 is down-regulated in jejunum villi epithelial cells during enterotoxigenic Escherichia coli-induced diarrhea in mice. Microbial Pathogenesis, 2017. 107: p. 430-435. |
[51] | Guttman, J.A., et al., Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell Microbiol, 2007. 9(1): p. 131-41. |
[52] | Zhang, D., et al., Aquaporin-3 is down-regulated in jejunum villi epithelial cells during enterotoxigenic Escherichia coli-induced diarrhea in mice. Microb Pathog, 2017. 107: p. 430-435. |
[53] | Jia, Z., et al., Effect of nisin on microbiome-brain-gut axis neurochemicals by Escherichia coli-induced diarrhea in mice. Microbial Pathogenesis, 2018. 119: p. 65-71. |
[54] | He, L., et al., AMPK/α-ketoglutarate axis regulates intestinal water and ion homeostasis in young pigs. Journal of agricultural and food chemistry, 2017. 65(11): p. 2287-2298. |
[55] | Kim, S.E., et al., Change of Fecal Flora and Effectiveness of the Short-term VSL#3 Probiotic Treatment in Patients With Functional Constipation. J Neurogastroenterol Motil, 2015. 21(1): p. 111-20. |
[56] | Rivera-Chávez, F. and J.J. Mekalanos, Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature, 2019. 572(7768): p. 244-248. |
[57] | Cassel, D. and T. Pfeuffer, Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proceedings of the National Academy of Sciences, 1978. 75(6): p. 2669-2673. |
[58] | Hamabata, T., C. Liu, and Y. Takeda, Positive and negative regulation of water channel aquaporins in human small intestine by cholera toxin. Microbial Pathogenesis, 2002. 32(6): p. 273-277. |
[59] | Flach, C.F., et al., Cholera toxin induces expression of ion channels and carriers in rat small intestinal mucosa. FEBS Lett, 2004. 561(1-3): p. 122-6. |
[60] | Flach, C.-F., et al., Differential expression of intestinal membrane transporters in cholera patients. FEBS letters, 2007. 581: p. 3183-8. |
[61] | Varmuzova, K., et al., The early innate response of chickens to Salmonella enterica is dependent on the presence of O-antigen but not on serovar classification. PLoS One, 2014. 9(4): p. e96116. |
[62] | Rodenburg, W., et al., Salmonella induces prominent gene expression in the rat colon. BMC Microbiol, 2007. 7: p. 84. |
[63] | Rodenburg, W., et al., Salmonella induces prominent gene expression in the rat colon. BMC Microbiology, 2007. 7(1): p. 84. |
[64] | Ghssein, G., et al., Surveillance Study of Acute Gastroenteritis Etiologies in Hospitalized Children in South Lebanon (SAGE study). Pediatric gastroenterology, hepatology & nutrition, 2018. 21(3): p. 176-183. |
[65] | Mahmud-Al-Rafat, A., et al., Rotavirus epidemiology and vaccine demand: considering Bangladesh chapter through the book of global disease burden. Infection, 2018. 46(1): p. 15-24. |
[66] | Ramig, R.F., Pathogenesis of Intestinal and Systemic Rotavirus Infection. Journal of Virology, 2004. 78(19): p. 10213-10220. |
[67] | Sanchez, L.C., Disorders of the gastrointestinal system. Equine internal medicine, 2018: p. 709. |
[68] | Halaihel, N., et al., Direct inhibitory effect of rotavirus NSP4 (114-135) peptide on the Na+-d-glucose symporter of rabbit intestinal brush border membrane. Journal of Virology, 2000. 74(20): p. 9464-9470. |
[69] | Hempson, S.J., et al., Rotavirus infection of murine small intestine causes colonic secretion via age restricted galanin-1 receptor expression. Gastroenterology, 2010. 138(7): p. 2410-2417. |
[70] | Cao, M., et al., Involvement of aquaporins in a mouse model of rotavirus diarrhea. Virologica Sinica, 2014. 29(4): p. 211-217. |
[71] | Huang, H., et al., Genistein inhibits rotavirus replication and upregulates AQP4 expression in rotavirus-infected Caco-2 cells. Archives of Virology, 2015. 160(6): p. 1421-1433. |
[72] | SONG, L., et al., Effect of Gegen Qinlian Decoction on AQP4 Expression in Colonic Epithelium of Wa-rotavirus-inducing Diarrhea Neonatal Mice Model. Traditional Chinese Drug Research and Clinical Pharmacology, 2012. 5. |
[73] | Beau, I., et al., An NSP4-dependant mechanism by which rotavirus impairs lactase enzymatic activity in brush border of human enterocyte-like Caco-2 cells. Cellular microbiology, 2007. 9(9): p. 2254-2266. |
[74] | Martin-Latil, S., et al., A cyclic AMP protein kinase A-dependent mechanism by which rotavirus impairs the expression and enzyme activity of brush border-associated sucrase-isomaltase in differentiated intestinal Caco-2 cells. Cellular microbiology, 2004. 6(8): p. 719-731. |
[75] | Han, Z. and R.V. Patil, Protein kinase A-dependent phosphorylation of aquaporin-1. Biochemical and biophysical research communications, 2000. 273(1): p. 328-332. |
[76] | Wang, S., et al., Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture. Journal of the Society for Gynecologic Investigation, 2006. 13(3): p. 181-185. |
[77] | CHEN, H., S.-t. GONG, and W.-j. QU, Expression of Aquaporins in Rotavirus Enteritis Treatment by Drug [J]. Progress in Modern Biomedicine, 2009. 17. |
[78] | Wang, K.S., et al., Colon water transport in transgenic mice lacking aquaporin-4 water channels. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2000. 279(2): p. G463-G470. |
[79] | Laforenza, U., et al., Aquaporin-8 is involved in water transport in isolated superficial colonocytes from rat proximal colon. The Journal of nutrition, 2005. 135(10): p. 2329-2336. |
[80] | Zhu, C., et al., Differential expression of intestinal ion transporters and water channel aquaporins in young piglets challenged with enterotoxigenic Escherichia coli K881. Journal of Animal Science, 2017. 95(12): p. 5240-5252. |
[81] | Peplowski, M.A., Regulation of Aquaporin 3 Expression in Intestinal Epithelial Cells by Tumour Necrosis Factor Alpha and Interferon Gamma. 2015, University of Calgary. |
[82] | Schoultz, I. and Å.V. Keita, Cellular and Molecular Therapeutic Targets in Inflammatory Bowel Disease — Focusing on Intestinal Barrier Function. Cells, 2019. 8(2): p. 193. |
[83] | Ricanek, P., et al., Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clin Exp Gastroenterol, 2015. 8: p. 49-67. |
[84] | Hui, L., et al., Coculture with Clostridium difficile promotes apoptosis of human intestinal microvascular endothelial cells. The Journal of international medical research, 2018. 46(11): p. 4731-4739. |
[85] | Planell, N., et al., Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut, 2013. 62(7): p. 967-76. |
[86] | Silberstein, C., et al., Functional characterization and localization of AQP3 in the human colon. Braz J Med Biol Res, 1999. 32(10): p. 1303-13. |
[87] | Abedin, S., V. Leela, and K. Loganathasamy, Aquaporin in mammalian species: A review. IJCS, 2019. 7(2): p. 1484-1491. |
[88] | Hardin, J.A., et al., Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn's disease and infectious colitis. Cell Tissue Res, 2004. 318(2): p. 313-23. |
[89] | Billiau, A., Interferon-gamma: biology and role in pathogenesis. Adv Immunol, 1996. 62: p. 61-130. |
[90] | Davidson, N.J., et al., IL-12, But Not IFN-γ, Plays a Major Role in Sustaining the Chronic Phase of Colitis in IL-10-Deficient Mice. The Journal of Immunology, 1998. 161(6): p. 3143-3149. |
[91] | Qidwai, T. and F. Khan, Tumour Necrosis Factor Gene Polymorphism and Disease Prevalence. Scandinavian Journal of Immunology, 2011. 74(6): p. 522-547. |
[92] | Zhao, G., et al., Aquaporin 3 and 8 are down-regulated in TNBS-induced rat colitis. Biochemical and Biophysical Research Communications, 2014. 443(1): p. 161-166. |
[93] | Zhao, G., et al., Aquaporin 3 and 8 are down-regulated in TNBS-induced rat colitis. Biochemical and biophysical research communications, 2013. 443. |
[94] | Peplowski, M.A., et al., Tumor necrosis factor α decreases aquaporin 3 expression in intestinal epithelial cells through inhibition of constitutive transcription. Physiological reports, 2017. 5(19): p. e13451. |
[95] | Satitsri, S., et al., Pathophysiological mechanisms of diarrhea caused by the Vibrio cholerae O1 El Tor variant: an in vivo study in mice. Virulence, 2016. 7(7): p. 789-805. |
[96] | Zhu, D., et al., Downregulation of Aquaporin 3 Mediated the Laxative Effect in the Rat Colon by a Purified Resin Glycoside Fraction from Pharbitis Semen. Evidence-Based Complementary and Alternative Medicine, 2019. 2019: p. 9406342. |
[97] | Wang, L., et al., Aquaporin 4 deficiency alleviates experimental colitis in mice. The FASEB Journal, 2019. 33(8): p. 8935-8944. |
[98] | Jayawardena, D., et al., Recent advances in understanding and managing malabsorption: focus on microvillus inclusion disease. F1000Research, 2019. 8: p. F1000 Faculty Rev-2061. |
[99] | Comegna, M., et al., Two cases of microvillous inclusion disease caused by novel mutations in MYO5B gene. Clinical case reports, 2018. 6(12): p. 2451-2456. |
[100] | Weis, V.G., et al., Loss of MYO5B in Mice Recapitulates Microvillus Inclusion Disease and Reveals an Apical Trafficking Pathway Distinct to Neonatal Duodenum. Cellular and Molecular Gastroenterology and Hepatology, 2016. 2(2): p. 131-157. |
[101] | Engevik, A.C., et al., Loss of MYO5B Leads to Reductions in Na(+) Absorption With Maintenance of CFTR-Dependent Cl(-) Secretion in Enterocytes. Gastroenterology, 2018. 155(6): p. 1883-1897.e10. |
[102] | Bijlsma, P.B., et al., INCREASED PARACELLULAR MACROMOLECULAR TRANSPORT AND SUBNORMAL GLUCOSE UPTAKE IN DUODENAL BIOPSIES OF PATIENTS WITH MICROVILLUS INCLUSION DISEASE. Journal of Pediatric Gastroenterology and Nutrition, 1999. 28(5). |
[103] | Sicherer, S.H. and H.A. Sampson, 9. Food allergy. J Allergy Clin Immunol, 2006. 117(2 Suppl Mini-Primer): p. S470-5. |
[104] | Yamamoto, T., H. Kuramoto, and M. Kadowaki, Downregulation in aquaporin 4 and aquaporin 8 expression of the colon associated with the induction of allergic diarrhea in a mouse model of food allergy. Life Sci, 2007. 81(2): p. 115-20. |
[105] | Wang, H., et al., N-Acetylcysteine improves intestinal function and attenuates intestinal autophagy in piglets challenged with β-conglycinin. Scientific Reports, 2021. 11(1): p. 1261. |
[106] | Ikarashi, N., et al., A mechanism by which the osmotic laxative magnesium sulphate increases the intestinal aquaporin 3 expression in HT-29 cells. Life sciences, 2011. 88(3-4): p. 194-200. |
[107] | Serrano, J., et al., Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Molecular nutrition & food research, 2009. 53(S2): p. S310-S329. |
[108] | Liu, C., et al., Rhubarb Tannins Extract Inhibits the Expression of Aquaporins 2 and 3 in Magnesium Sulphate-Induced Diarrhoea Model. BioMed Research International, 2014. 2014: p. 619465. |
[109] | Longley, D.B., D.P. Harkin, and P.G. Johnston, 5-fluorouracil: mechanisms of action and clinical strategies. Nature reviews cancer, 2003. 3(5): p. 330-338. |
[110] | Seleme, M.C., et al., Tumor Necrosis Factor Alpha-Induced Recruitment of Inflammatory Mononuclear Cells Leads to Inflammation and Altered Brain Development in Murine Cytomegalovirus-Infected Newborn Mice. Journal of virology, 2017. 91(8): p. e01983-16. |
[111] | Yoshino, F., et al., Alteration of the redox state with reactive oxygen species for 5-fluorouracil-induced oral mucositis in hamsters. PLoS One, 2013. 8(12): p. e82834. |
[112] | Kamar, S.S., M.H. Baky, and A.I. Omar, The beneficial influence of rhubarb on 5-fluorouracil-induced ileal mucositis and the combined role of aquaporin-4, tumour necrosis factor-α, nuclear factor-kappa B & matrix metalloproteinase-9 in rat model: histological study. Anat Cell Biol, 2020. 53(2): p. 228-239. |
[113] | Sakai, H., et al., 5-Fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines. PloS one, 2013. 8(1): p. e54788-e54788. |
[114] | Sakai, H., et al., Neutrophil recruitment is critical for 5-fluorouracil-induced diarrhea and the decrease in aquaporins in the colon. Pharmacol Res, 2014. 87: p. 71-9. |
[115] | Cao, Y., et al., Aquaporins Alteration Profiles Revealed Different Actions of Senna, Sennosides, and Sennoside A in Diarrhea-Rats. International journal of molecular sciences, 2018. 19(10): p. 3210. |
[116] | Kon, R., et al., Laxative effect of repeated Daiokanzoto is attributable to decrease in aquaporin-3 expression in the colon. Journal of Natural Medicines, 2018. 72(2): p. 493-502. |
[117] | Kon, R., et al., Rheinanthrone, a metabolite of sennoside A, triggers macrophage activation to decrease aquaporin-3 expression in the colon, causing the laxative effect of rhubarb extract. J Ethnopharmacol, 2014. 152(1): p. 190-200. |
[118] | Hardin, J.A., et al., Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn’s disease and infectious colitis. Cell and Tissue Research, 2004. 318(2): p. 313-323. |
[119] | Wang, L., et al., Aquaporin 4 deficiency alleviates experimental colitis in mice. Faseb j, 2019. 33(8): p. 8935-8944. |