[1] | Komaki A., Khalili A., Salehi I., Shahidi S., Sarihi A., 2014, Effects of exposure to an extremely low frequency electromagnetic field on hippocampal long-term potentiation in rat. Brain Res., 1564, 1-8. |
[2] | Zhang Y., Liu X., Zhang J., Li N., 2015, Short-term effects of extremely low frequency electromagnetic fields exposure on Alzheimer's disease in rats. Int. J. Radiat. Biol., 91, 28-34. |
[3] | Wyszkowska J., Shepherd S., Sharkh S., Jackson C.W., Newland P.L., 2016, Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts. Sci. Rep., 6, 36413. |
[4] | Stanley S.A., Kelly L., Latcha K.N., et al., 2016, Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature, 531, 647-50. |
[5] | Parsegian V.A., Rand R.P., Rau D.C., 2000, Osmotic stress, crowding, preferential hydration, and binding: A comparison of perspectives. Proc. Nat. Sci., USA, 97, 3987-3992. |
[6] | Ayrapetyan S.N., Suleymanyan M.A., Saghyan A.A., Dadalyan S.S., 1984, Autoregulation of electrogenic sodium pump. Cell. Mol. Neurobiol., 4, 367- 383. |
[7] | Ayrapetyan S.N., Arvanov V.L., Maginyan S.N., Azatyan K.V., 1985, Further study of the correlation between Na-Pump activity and membrane chemosensitivity. Cell. Mol. Neurobiol., 5, 231-243. |
[8] | Ayrapetyan S.N., Rychkov G.Y., Suleymanyan M.A., 1988, Effects of water flow on transmembrane ionic currents in neurons of Helix Pomatia and in squid giant axons. Comp. Biochem. Physiol., 89a, 179-186. |
[9] | V.I. Klassen, 1982, Magnetization of Water Systems. Chemistry Press: Moscow (in Russian). |
[10] | Lednev V.V., 1991, Possible mechanism for the influence of weak magnetic field interactions with biological systems. Bioelectromagnetics, 18, 455-461. |
[11] | Ayrapetyan S.N., Grigorian C.V., Avanesian A.S., 1994, Magnetic fields alter electrical properties of solutions and their physiological effects. Bioelectromagnetics, 15, 133-42. |
[12] | Borgnia M., Nielsen S., Engel A., Agre P., 1999, Cellular and molecular biology of the aquaporin water channels. Annual Rev. Biochem., 68, 425-58. |
[13] | Hoffmann E.K., Sørensen B.H., Sauter D.P., Lambert I.H., 2015, Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance. Channels (Austin), 9, 380-96. |
[14] | Ayrapetyan S.N., 2015, The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR). Electromagnet. Biol. Med., 34, 197-210. |
[15] | Blaustein M.P., and Lederer W.J., 1999, Na+/Ca2+ exchange. Its physiological implications. Physiol. Rev., 79, 763-854. |
[16] | Xie Z., and Askari A., 2002, Na+/K+-ATPase as a signal transducer. Eur. J. Biochem., 269, 2434−2439. |
[17] | Ayrapetyan S., Baghdasaryan N., Mikayelyan Y. et al., 2015, Cell hydration as a marker for nonionizing radiation. In: Markov M, ed. Electromagnetic Fields in Biology and Medicine. USA: CRC Press, 193-215. |
[18] | Baghdasaryan N., Mikayelyan Y., Barseghyan S., Dadasyan E., Ayrapetyan S., 2012, The modulating impact of illumination and background radiation on 8Hz-induced infrasound effect on physicochemical properties of physiological solution. Electromagnet. Biol. Med., 31, 310-319. |
[19] | Baghdasaryan N.S., Mikayelyan Y.R., Nikoghosyan A.K., Ayrapetyan S.N., 2013, The impact of background radiation, illumination and temperature on EMF-induced changes of aqua medium properties. Electromagnet. Biol. Med., 32, 390-400. |
[20] | Martirosyan V., Baghdasaryan N., Ayrapetyan S., 2013, Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field on E. coli K-12. Electromagnet. Biol. Med., 32, 291-300. |
[21] | Krnjevic K., 1992, Cellular and synaptic actions of general anaesthetics. Gen. Pharmacol., 23, 965-75. |
[22] | Heqimyan A., Deghoyan A., Ayrapetyan S., 2011, Ketamine-induced cell dehydration as mechanism of its analgesic and anesthetic effects. J. Intern. Dent. Med. Res., 4, 42-49. |
[23] | Takahashi R., and Aprison M., 1964, Acetylcholine content of discrete areas of the brain obtained by a near-freezing method. J. Neurochem., 11, 887-898. |
[24] | Blackman C.F., Elder J.A., Weil C.M., Benane S.G., Eichinger D.C., House D.E., 1979, Induction of calcium ion efflux from brain tissue by radiofrequency radiation: Effects of modulation-frequency and field strength. Radio Science, 1, 93-98. |
[25] | Baker P.F., Blaustein M.P., Hodgkin A.L., Steinhardt R.A., 1969, The influence of Ca on Na efflux in squid axons. J. Physiol., 200, 431-458. |
[26] | Heqimyan A., Narinyan L., Nikoghosyan A., Ayrapetyan S., 2015, Age-dependent magnetic sensitivity of brain and heart muscles. In: Markov M, ed. Electromagnetic Fields in Biology and Medicine. USA: CRC Press, 217-230. |
[27] | Deghoyan A., Nikogosyan A., Heqimyan A., Ayrapetyan S., 2014, Age-dependent effect of static magnetic field on brain tissue hydration. Electromagnet. Biol. Med., 33, 58-67. |
[28] | Sagian A.A., Ayrapetyan S.N., Carpenter D.O., 1996, Low concentrations of ouabain stimulate Na:Ca exchange in neurons. Cell. Mol. Neurobiol., 16, 489-98. |
[29] | Fares M.B., Maco B., Oueslati A., et al. 2016, Induction of de novo α-synuclein fibrillization in a neuronal model for Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 113, E912-21. |
[30] | Skou J., 1957, The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta, 23, 394–401. |
[31] | Ayrapetyan S.N., and Sulejmanian M.A., 1979, On the pump-induced cell volume changes. Comp. Biochem. Physiol., part A, Comp. Pharmacol., 64, 571-575. |
[32] | Khachaturian Z.S., 1989, The role of calcium regulation in brain aging: reexamination of a hypothesis. Aging, 1, 17-34. |