[1] | O'Sullivan, P. A., and O'Donovan, J. T., 1980, Influence of various herbicides and Tween 20 on the effectiveness of glyphosate. J. Plant Sci. 60, 939 – 945. |
[2] | Lym, R. G., 2000, Leafy spurge (Euphorbia esula) control with glyphosate plus 2,4-D. J. Range Manage. 53, 66 – 72. |
[3] | Sharma, S. D., and Singh, M., 2001, Surfactants increase toxicity of glyphosate and 2,4-D to Brazil Pulsey. HortSci. 36(4), 726 – 728. |
[4] | U.S.D.A., Forest Service, 1984. Pesticide background statements. p. G1-G72. In Agriculture Handbook No. 633. Vol. 1. Herbicides. Part 2. |
[5] | WHO, 1988. Environmental Health Criteria 159, Toxicological Evaluations - Glyphosate; International Programme on Chemical Safety, World Health Organization: Geneva, Switzerland. |
[6] | U.S. EPA, 1990. Pesticide Fact Handbook. Vol. 2. p. 301-312. Noyes Data Corporation. Park Ridge, New Jersey. |
[7] | Giesey, J. P., Dobson, S., and Solomon, K. R., 2000, Ecotoxicological risk assessment for Roundup herbicide. Rev. Environ. Contam. Toxicol. 167, 35 – 120. |
[8] | U.S. EPA, 2005, Reregistration Eligibility Decision (RED) 2,4-D; EPA 738-R-05-002; U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2005. |
[9] | Daugherty, D., and Karel, S., 1994, Degradation of 2,4-dichlorophenoxyacetic acid by Pseudomonas cepacia DBO1 (pRO101) in a dual-substrate chemostat. Appl. Environ. Microbiol. 60, 3261 – 3267. |
[10] | Kohring, G-W., Zhang, X., and Wiegel J., 1989, Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulphate. Appl. Environ. Microbiol. 55(10), 2735 – 2737. |
[11] | Zhang, X., and Wiegel, J., 1990, Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl. Environ. Microbiol. 56(4), 1119 – 1127. |
[12] | Fukumori, F., and Hausinger, R., 1993, Alcaligenes eutrophus JMP134 “2,4-dichlorophenoxyacetatemonooxygenase” is an α-ketoglutarate-dependent dioxygenase. J. Bacteriol. 175, 2083 – 2086. |
[13] | Nweke, C. O., Ahumibe N. C.,and Orji J. C., 2014, Toxicity of binary mixtures of formulated Glyphosate and phenols to Rhizobium species dehydrogenase activity. J. Microbiol. Res. 2014, 4(4): 161–169. |
[14] | Brain, P., and Cousens, R., 1989, An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res. 29, 93 – 96. |
[15] | Schabenberger, O., Tharp, B. E., Kells, J. J., and Penner, D., 1999, Statistical test for hormesis and effective dosages in herbicide dose–response. Agron J. 91, 713–721. |
[16] | Cedergreen, N., Ritz, C. and Streibig, J. C., 2005, Improved empirical models describing hormesis. Environ. Toxicol. Chem. 24(12), 3166 – 3172. |
[17] | Belz R. G., Cedergreen N., and Sørensen H. 2008, Hormesis in mixtures — Can it be predicted? Science of the Total Environ. 404, 77 – 87. |
[18] | Petersen, K., and Tollefsen, K.E. 2011, Assessing combined toxicity of estrogen receptor agonists in a primary culture of rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol. 101, 186 – 195. |
[19] | Li,Y., Zhang B., He X., Cheng W-H., Xu W., Luo Y., Liang R., Luo H.and Huang K., 2014, Analysis of individual and combined effects of ochratoxin A and zearalenone on HepG2 and KK-1 cells with mathematical models. Toxins 6, 1177 – 1192. |
[20] | Calabrese, E. J., 2008, Hormesis: why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 27, 1451– 1474. |
[21] | Brack, A., Strube J., Stolz P., and Decker H., 2003, Effects of ultrahigh dilutions of 3,5-dichlorophenol on the luminescence of the bacterium Vibrio fischeri. Biochimica et Biophysica Acta 1621: 253 – 260. |
[22] | Zhang, J., Liu, S-S, Yu, Z-Y., and Zhang, J., 2013, Time -dependent hormetic effects of 1-alkyl-3-methyllimidazolium bromide on Vibrio qinghaiensis sp.-Q67: Luminescence, redox reactants and antioxidases. Chemosphere 91, 462 – 467. |
[23] | Zou, X., Lin, Z., Deng, Z., and Yin, D., 2013, Novel approach to predicting hormetic effects of antibiotic mixtures on Vibrio fischeri. Chemosphere 90, 2070 – 2076. |
[24] | Okolo, J.C., Nweke, C.O., Nwabueze, R.N., Dik,e C.U., and Nwanyanwu, C.E., 2007, Toxicity of phenolic compounds to oxidoreductases of Acinetobacter species isolated from a tropical soil. Sci. Res. Essay 2(7), 244 – 250. |
[25] | Nweke, C.O. and Okpokwasili G.C., 2010a, Influence of exposure time on phenol toxicity to refinery wastewater bacteria. J Environ. Chem. Ecotoxicol. 2(2), 20 – 27. |
[26] | Nweke C.O. and Okpokwasili G. C., 2010b, Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds. Ambi-Água 5(1), 6 – 16. |
[27] | Keweloh, H., Weyrauch, G., and Rehm, H. J., 1990, Phenol induced membrane changes in free and immobilized Escherichia coli. Appl. Microbiol. Biotechnol. 33 65 – 71. |
[28] | Heipieper, H. J., Keweloh, H., Rehm, H. J., 1991, Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl. Environ. Microbiol. 57, 1213 –1217 |
[29] | Heipieper, H. J., Diefenbach, R., and Keweloh, H., 1992, Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58, 1847 – 1852. |
[30] | Tsui, M. T. K., and Chu, L. M., 2003, Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52, 1189 – 1197. |
[31] | Bonnet, J. L., Bonnemoy, F., Dusser, M., and Bohatier, J., 2007, Assessment of the potential toxicity of herbicides and their degradation products to non target cells using two microorganisms, the bacteria Vibriof ischeri and the ciliate Tetrahymena pyriformis. Environ. Toxicol. 22: 78 – 91. |
[32] | Huang, W. Y., Liu, F., Liu, S. S.. Ge, H. L., and Chen, H. H., 2011, Predicting mixture toxicity of seven phenolic compounds with similar and dissimilar actionmechanisms to Vibrio qinghaiensis sp.nov.Q67. Ecotoxicol. Environ. Saf. 74, 1600 – 1606. |
[33] | Mo, L. Y., Liu, S. S., Zhu, Y. N., Liu, H. L., Liu, H. Y., and Yi, Z. S., 2011, Combined toxicity of the mixtures of phenol and aniline derivatives to Vibrio qinghaiensis sp.-Q67, Bull. Environ. Contam. Toxicol. 87 (4), 473 – 479. |
[34] | Mo, L., Zhu, Z., Zhu, Y. Zeng, H., and Li Y., 2014, Prediction and evaluation of the mixture toxicity of twelve phenols and ten anilines to the freshwater photobacterium Vibrio qinghaiensis sp.- Q67. J. Chem. 2014, 1 – 9. |
[35] | Barata, C., Baird, D.J., Nogueira, A.J.A., Soares, A., and Riva, M.C., 2006. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat. Toxicol. 78, 1 – 14. |
[36] | Backhaus, T., Faust, M., Scholze, M., Gramatica, P., Vighi, M., and Grimme, L.H., 2004. Joint algal toxicity of phenylurea herbicides is equally predictable by concen- tration addition and independent action. Environ. Toxicol. Chem. 23, 258 – 264. |
[37] | Faust, M., Altenburger, R., Backhaus, T., Bödeker, W., Scholze, M., and Grimme, L.H., 2000, Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J. Environ. Qual. 29, 1063 – 1068. |