[1] | E.F Corbett, M. Michalak, “Calcium, a signalling molecule in the endoplasmic reticulum”, Trends in Biochemical Sciences, vol.25, pp.307-11, 2000a. |
[2] | O. Baumann, B. Walz, “Endoplasmic reticulum of animal cells and its organization into structural and functional domains”, International Review of Cytology, vol.205, pp.149–214, 2001. |
[3] | S. Persson, J. Harper, “The ER and cell calcium” Plant Cell Monographs, vol.4, pp.251-278, 2006. |
[4] | E. F. Corbett, M. Michalak, K. Oikawa, S. Johnson S, I. D. Campbell, P. Eggleton, C. Kay, “The conformation of calreticulin is influenced by the endoplasmic reticulum lumenal environment”, Journal of Biological Chemistry, vol.275, pp.27177–27185, 2000b. |
[5] | S.C. Hubbard, R. J. Ivatt, “Synthesis and processing of asparagine-linked oligosaccharides”, Annual Review of Biochemistry, vol.50, pp.555–583, 1981. |
[6] | D. N. Hebert, M. Molinari, “In and out of the ER: protein folding, quality control, degradation, and related human diseases”, Physiological Reviews, vol.87, pp.1377–1408, 2007. |
[7] | D. B. Williams, “Beyond lectins: the calnexin/ calreticulin chaperone system of the endoplasmic reticulum”, Journal of Cell Science, vol.119, pp.615–623, 2006. |
[8] | L. Huang, A. E. Franklin, N. E. Hoffman, “Primary structure and characterization of an Arabidopsis thaliana calnexin-like protein”, Journal of Biological Chemistry, vol. 268, pp.6560–6566, 1993. |
[9] | A. J. Crofts, J. Denecke, “Calreticulin and calnexin in plants”, Trends in Plants Sciences, vol.3, pp.396–399, 1998. |
[10] | M. Sarwat, N. Tuteja, “Calnexin: a versatile calcium binding integral membrane bound chaperone of endoplasmic reticulum”, Calcium Binding Proteins, vol.2, pp.36-50, 2007. |
[11] | T. J. Ostwald, D. H. MacLennan, “Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum”, Journal of Biological Chemistry, vol.249, pp. 974–979, 1974. |
[12] | J. Denecke, L. E. Carlsson, S. Vidal, A. S. Hoglund, B. Ek, M. J. Van, K. M. Sinjorgo, E. T. Palva, “The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo”, Plant Cell, vol.7, pp.391–406, 1995. |
[13] | S. Persson, S. E. Wyatt, J. Love, W. F. Thompson, D. Robertson, W. F. Boss, “The Ca2+ status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants” Plant physiology, vol.126, pp.1092-1104, 2001. |
[14] | S. E. Wyatt, P. L. Tsou, D. Robertson, “Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants”, Transgenic Research, vol.11, pp.1–10, 2002. |
[15] | A. Akesson, S. Persson, J. Love, W. F. Boss, S. Widell, M. Sommarin, “Over expression tobacco cell suspensions (Nicotiana tobacum, L.) in high Ca2+ medium”, Plant Physiology, vol.123, pp.92–99, 2005. |
[16] | S. J. Coughlan, C. Hastings, C. Winfrey, “Cloning and characterization of the calreticulin gene from Ricinus communis L”, Plant Molecular Biology, vol.34, pp.897–911, 1997. |
[17] | A. Trotta, G. Konert, M. Rahikainen, E. M. Aro, S. Kangasjärvi, “Knock-down of protein phosphatase 2A subunit B’ γ promotes phosphorylation of calreticulin 1 in Arabidopsis thaliana”, Plant Signalling Behaviour, vol.6, pp.1665-8, 2011. |
[18] | I. Wada, D. Rindress, P. H. Cameron, W. J. Ou, J. J. Doherty, D. Louvard, A. W. Bell, D. Dignard, D. Y. Thomas, J. J. Bergeron, “SSRα and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane”, Journal of Biological Chemistry, vol.266, pp.19599–19610, 1991. |
[19] | W. J. Ou, J. J. Bergeron, Y. Li, C. Y. Kang, D. Y. Thomas, “Conformational changes induced in the endoplasmic reticulum luminal domain of calnexin by Mg-ATP and Ca2+”, Journal of Biological Chemistry, vol.270, pp.18051-18059, 1995. |
[20] | A. Zapun, S. M. Petrescu, P. M. Rudd, R. A. Dwek, R. A. Thomas, J. J. Bergeron, “Conformation independent binding of monoglucosylated ribonuclease B to calnexin”, Cell, vol.88, pp.29–38, 1997. |
[21] | L. Ellgaard, M. Molinari, A. Helenius, “Setting the standards: quality control in the secretory pathway”, Science, vol.286, pp.1882–1888, 1999. |
[22] | M. A. Sarwat, A. R. Naqvi, “Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tobacum”, Molecular Biolology Reports, vol.40, pp.5451-64, 2013. |
[23] | L. Fliegel, K. Burns, M. Opas, M. Michalak, “The high-affinity calcium binding protein of sarcoplasmic reticulum: tissue distribution, and homology with calregulin”, Biochimica et Biophysica Acta, vol.982, pp.1-8, 1989a. |
[24] | L. Fliegel, K. Burns, D. H. MacLennan, R. A. Reithmeier, M. Michalak, “Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum”, Journal of Biological Chemistry, vol.264, pp.21522–21528, 1989a. |
[25] | G. M. Denning, K. G. Leidal, V. A. Holst, S. S Iyer, R. A. Clark, “Calreticulin biosynthesis and processing in human myeloid cells: demonstration of signal peptide cleavage and N-glycosylation. Blood”, vol.90, pp.372-81, 1997. |
[26] | M. J. Smith, G. L. Koch, “Multiple zones in the sequence of calreticulin (CRP55, Calregulin, HACBP), a major calciun binding ER/SR protein”, EMBO Journal, vol.8, pp.3581-3586, 1989. |
[27] | M. Michalak, R. E. Milner, K. Burns, M. Opas, “Calreticulin”, Journal of Biochemistry, vol.285, pp.681-692, 1992. |
[28] | M. Michalak, K. Burns, C. Andrin, N. Mesaeli, G. H. Jass, M. Opas, “Endoplasmic reticulum form of calreticulin modulates glucocorticoid-sensitive gene expression”, Journal of Biological Chemistry, vol.271, pp.29436-29445, 1996. |
[29] | M. R. Leach, M. F. Cohen-Doyle, D. Y. Thomas, D. B. Williams, “Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin”, Journal of Biological Chemistry, vol.277, pp.29686–29697, 2002. |
[30] | M. Kapoor, L. Ellgaard, A. Surolia, “Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition”, Biochemistry, vol.43, pp.97–106, 2004. |
[31] | S. P. Thomson, D. B. Williams, “Delineation of the lectin site of the molecular chaperone calreticulin”, Cell Stress Chaperones, vol.10, pp.242–251 2005. |
[32] | J. Gopalakrishnapai, G. Gupta, T. Karthikeyan, A. Surolia, “Isothermal titration calorimetric study defines the substrate binding residues of calreticulin”, Biochemical and Biophysical Research Communications, vol.351, pp.14–20, 2006. |
[33] | M. R. Leach, D. B. Williams, “Lectin-deficient calnexin is capable of binding class I histocompatibility molecules in vivo and preventing their degradation”, Journal of Biological Chemistry, vol.279, pp.9072–9079, 2004. |
[34] | A. Vassilakos, M. Michalak, M. A. Lehrman, D. B. Williams, “Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin”, Biochemistry, vol.37, pp.3480–3490, 1998. |
[35] | L. Ellgaard, R. Riek, D. Braun, K. Wuthrich, “Three-dimensional structure topology of the calreticulin P-domain based on NMR assignment”, FEBS Letters, vol.488, pp.69–73, 2001. |
[36] | V. Martin, J. Groenendyk, S. S. Steiner, L. Guo, M. Michalak, “Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin”, Journal of Biological Chemistry, vol.281, pp.2338–2346, 2006. |
[37] | L. Ellgaard, P. Bettendorff, D. Braun, K. Wuthrich, “NMR structures of 36 and 73-residue fragments of the calreticulin P-domain”, Journal of Molcular Biology, vol.322, pp.773–784, 2002. |
[38] | E. M. Frickel, R. Riek, I. Jelesarov, A. Helenius, K. Wuthrich, L. Ellgaard, “TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain”, Proceedings of the National Academy of Sciences (U.S.A), vol.99, pp.1954–1959, 2002. |
[39] | J. D. Schrag, J. J. M. Bergeron, Y. Li, M. Cygler, “The structure of calnexin, an ER chaperone involved in quality control of protein folding”, Molecular Cell, vol.8, pp.633–644, 2001. |
[40] | K. Nakamura, A. Zuppini, S. Arnaudeau, J. Lynch, I. Ahsan, M. Michalak, “Functional specialization of calreticulin domains”, Journal of Biological Chemistry, vol.154, pp. 961–972, 2001. |
[41] | L. W. Tjoelker, C. E. Seyfried, R. L. Eddy Jr, P.W. Gray, “Human, mouse, and rat calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5”, Biochemistry, vol.33, pp.3229–3236 1994. |
[42] | F. Delom, E. Chevet, “In vitro mapping of calnexin interaction with ribosomes”, Biochemical and Biophysical Research Communications, vol.341, pp.39–44, 2006. |
[43] | E. Chevet, H. N. Wong, D. Y. Thomas, J. J. Bergeron, “Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes”, EMBO Journal, vol.18, pp.3655–3666, 1999. |
[44] | W. J. Ou, D. Y. Thomas, A. W. Bell, J. J. Bergeron, “Casein kinase II phosphorylation of signal sequence receptor α and the associated membrane chaperone calnexin”, Journal of Biological Chemistry, vol.267, pp.23789–23796, 1992. |
[45] | X. Y. Jia, J. J. Hea, R. L. Jing, R. Z. Lia, “Calreticulin: conserved protein and diverse functions in plants”, Plant Physiology, vol.136, pp.127–138, 2009. |
[46] | X. Y. Jia, C. Y. Xu, R. L. Jing, X. P. Chang, “Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses” Journal of Experimental Botany, vol.59, pp.739–751, 2008. |
[47] | S. Komatsu, G. Yang, M. Khan, H. Onodera, S. Toki, M. Yamaguchi, “Over-expression of calcium-dependent protein kinase and calreticulin interacting protein confers cold tolerance on rice plants”, Molecular Genetics Genomics, vol.277, pp. 713–723, 2007. |
[48] | H. Jin, Z. Hong, W. Su, J. Li, “A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum”, Proceedings of the National Academy of Sciences (U.S.A), vol.106, pp. 13612–13617, 2009. |
[49] | J. Li, C. Zhao-Hui, M. Batoux, J. D. Jones, “Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR”, Proceedings of the National Academy of Sciences (U.S.A), vol.106, pp.15973–15978, 2009. |
[50] | Y. Saijo, N. Tintor, X. Lu, S. Robatzek, P. Schulze-Lefert, “Receptor quality control in the endoplasmic reticulum for plant innate immunity”, EMBO Journal, vol.28, pp.3439–3449, 2009. |
[51] | A. Christensen, K. Svensson, L. Thelin, S. Persson, “Higher plant calreticulins have acquired specialized functions in Arabidopsis”, PLoS ONE, vol.5, pp.11342-52, 2010. |
[52] | S. Persson, M. Rosenquist, K. Svensson, R. Galvão, W. F. Boss, M. Sommarin, “Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants”, Plant Physiology, vol.133, pp.1385–1396, 2003. |
[53] | M. Sarwat, N. Tuteja, “Over expression of rice calnexin protects transgenic tobacco plants from ER stress”, In: Society of experimental Biology Annual Meeting, Prague. 30, 2010. |
[54] | A. J. Parodi, “Protein glucosylation and its role in protein folding”, Annual Review of Biochemistry, vol.69, pp.69-93, 2000. |
[55] | Y. H. Cheong, H. S. Chang, R. Gupta, S. Luan, “Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis”, Plant Physiology, vol.129, pp.661-677, 2002. |
[56] | M. R. Roberts, J. Salinas, D. B. Collinge, “Proteins and their response to abiotic and biotic stress”, Plant Molecular Biology, vol.50, pp.1031-1039, 2002. |
[57] | L. Xiong, K. S. Schumaker, J. Zhu, “Cell signaling during cold, drought, and salt stress”, Plant Cell, vol.14, pp.165-183, 2002. |
[58] | W. X. Wang, B. Vinocur, O. Shoseyov, A. Altman, “Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations”, Acta Horticulture, vol.560, pp.285–292, 2001. |
[59] | N. Smirnoff, “Plant resistance to environmental stress”, Current Opinion of Plant Biology, vol.9, pp.214–219, 1998. |
[60] | K. J. Travers, C. K. Patil, C. K. Wodicka, D. J. Lockhart, J. S. Weissman, P. Walter, “Functional and genomic analyses reveal essential coordination between the unfolded protein response and ER associated degradation”, Cell, vol.101, pp.249–258, 2000. |
[61] | S. Kamauchi, H. Nakatani, C. Nakano, R. Urade, “Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana”, FEBS Journal, vol.272, pp.3461–3476, 2005. |
[62] | I. M. Martin, M. J. Chrispeels, “Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes”, Plant Cell, vol.15, pp.561–576, 2003. |
[63] | F. Chen, P. M. Hayes, D. M. Mulrooney, A. Pan, “Identification and characterization of cDNA clones encoding plant calreticulin in barley”, Plant Cell, vol.6, pp.835–843, 1994. |
[64] | D. P. McCauliffe, F. A. Lux, J. D. Capra, “Molecular cloning, expression, and chromosome 19 localization of a human Ro/SS-A autoantigen”, Journal of Clinical Investigation., vol.85, pp.1379–1391, 1990. |
[65] | M. Michalak, E. F. Corbett, N. Mesaeli, K. Nakamura, M. Opas, “Calreticulin: one protein, one gene, many functions”, Journal of Biochemistry, vol.344, pp.281–292, 1999. |
[66] | M. J. Smith, “Elegans gene encodes a protein homologous to mammalian calreticulin”, DNA Sequencing, vol.2, pp.235–240, 1992a. |
[67] | M. J. Smith, “Nucleotide sequence of a Drosophila melanogaster gene encoding a calreticulin homologue”, DNA Sequencing, vol.3, pp.247–250, 1992b. |
[68] | B. A. Kwiatkowski, A. G. Zielinska-Kwiatkowska, L. D. Wasilewska, “Cloning of two cDNAs encoding calnexin-like and calreticulin-like proteins from maize (Zea mays) leaves: identification of potential calcium-binding domains”, Gene, vol.165, pp.219–222, 1995. |
[69] | D. E. Nelson, B. Glaunsinger, H. J. Bohnert, “Abundant accumulation of the calcium-binding molecular chaperone calreticulin in specific floral tissues of Arabidopsis thaliana”, Plant Physiology, vol.114, pp.29–37, 1997. |
[70] | P. Gelebart, M. Opas, M. Michalak, “Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum”, International Journal of Biochemistry and Cell Biology, vol.37, pp.260–266, 2005. |
[71] | N. J. Waterhouse, M. J. Pinkoski, “Calreticulin: raising awareness of apoptosis”, Apoptosis, vol.12, pp.631–634, 2007. |
[72] | I. Heilmann, J. Shin, J. Huang, I. Y. Perera, E. Davies, “Transient dissociation of polyribosomes and concurrent recruitment of calreticulin and calmodulin transcripts in gravistimulated maize pulvini”, Plant Physiology, vol.127, pp.1193–1203, 2001. |
[73] | A. Christensen, K. Svensson, S. Persson, M. Sommarin, “Functional characterization of Arabidopsis calreticulin 1a: a key alleviator of endoplasmic reticulum stress”, Plant Cell Physiology, vol.49, pp.912–924, 2008. |
[74] | Chen M.H., Tian G.W., Gafni Y., Citosvsky Y. “Effects of calreticulin on viral cell-to-cell movement”, Plant Physiology, vol.138(4), pp.1866–1876, 2005. |
[75] | Y. Qiu, J. Xi, L. Du, S. Roje, B. W. Poovaiah, “A dual regulatory role of Arabidopsis calreticulin-2 in plant innate immunity”, Plant Journal, vol.69, pp.489–500, 2012. |
[76] | L. Thelin, M. Mutwil, M. Sommarin, S. Persson, “Diverging functions among calreticulin isoforms in higher plants”, Plant Signalling Behaviour, vol.6, pp.905–910, 2011. |
[77] | Z. Hong, H. Jin, T. Tzfira, J. Li, “Multiple mechanism mediated retention of a defective brassinosteroid receptors in the endoplasmic reticulum of Arabidopsis”, Plant Cell, vol.20, pp.3418–3429, 2008. |
[78] | F. Georges, A. Hussain, W. A. Keller, “Transcription patterns of the Calreticulin gene in Brassica napus seedlings under different environmental stress conditions”, In: Proceedings of the First International Conference in Egypt on Plant Tissue Culture and its Applications, Egypt. pp.26–40, 1999. |
[79] | Z. Li, H. Onodera, M. Ugaki, H. Tanaka, S. Komatsu, “Characterization of calreticulin as a phosphoprotein interacting with cold-induced protein kinase in rice”, Biology Pharmaceutical Bulletin, vol.26, pp.256–261, 2003. |
[80] | J. Shaterian, F. Georges, A. Hussain, D. Waterer, H. D. Jong, K. K. Tanino, “Root to shoot communication and abscisic acid in calreticulin (CR) gene expression and salt-stress tolerance in grafted diploid potato clones”, Environment and Experimental Botany, vol.53, pp.323-332, 2005. |
[81] | J. H. Kim, N. H. Nguyen, N. T. Nguyen, S. W. Hong, H. Lee, “Loss of all three calreticulins, CRT1, CRT2, and CRT3, causes enhanced sensitivity”, Plant Cell Reproduction, vol.32, pp.1843-53, 2013. |
[82] | M. Z. Nouri, S. Hiraga, S. Komatsu, “Characterization of calnexin in soybean roots and hypocotyls under osmotic stress”, Phytochemistry, vol.74, pp.20–29, 2012. |
[83] | Q. Wu, T. Shigaki, S. Park, “Extopic Expression of maize a calreticulin mitigates calcium deficiency-like disorders in sCAX1 expressing tobacco and tomato”, Plant Molecular Biology, vol.80, pp.609-619, 2012. |
[84] | R. B. Abramovitch, G. B. Martin, “Strategies used by bacterial pathogens to suppress plant defences”, Current Opinion in Plant Biology, vol.7, pp.356-364, 2004. |
[85] | J. L. Caplan, X. Zhu, P. Mamillapalli, R. Marathe, R. Anandalakshmi, S. P. K. Dinesh, “Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants”, Cell Host Microbiology, vol.6, pp.457-69, 2009. |