[1] | Mattei X (1991). Spermatozoa ultrastructure and its systematic implications in fishes. J Zool 69:3038–3055. |
[2] | Baccetti B, Burrini AG, Callaini G et al. (1984). Fish germinal cells. I. Comparative spermatology of seven cyprinid species. Gamete Res 10:373–396. |
[3] | Baccetti B (1986). Evolutionary trends in sperm structure. Comp Biochem Physiol A 85:29-36. |
[4] | Jones PR and Butler RD (1988). Spermatozoon ultrastructure of Platichthys flesus. J Ultrastruct Mol Struct Res 98:71-82. |
[5] | Ginsburg AS (1968). Fertilization of fishes and the problem of polyspermy. Translation: NOOAA and National Science Foundation, Academy of Science USSR, Moscow, p 354. |
[6] | Grier HJ, Fitzsimons JM, Linton JR (1978). Structure and ultrastructure of the testis and sperm formation in goodeid teleosts. J Morphol 156(3):419-37. |
[7] | Mattei C, Mattei X (1974). Spermiogenesis and spermatozoa of the Eiopomorpha (teleost fish). In: Afzelius BA (ed) The functional anatomy of the spermatozoon. Oxford: Pergamon Press, pp 211–21. |
[8] | Lahnsteiner F, Patzner RA (1997). Fine structure of spermatozoa of four littoral teleosts Symphodus ocellatus, Corisjulis, Thalassoma pavo and Chromis chromis. J Submicr Cytol Path 29:477–85. |
[9] | Jamieson BGM (1991). Fish evolution and systematics: evidence from spermatozoa. Cambridge University Press. Cambridge, UK. |
[10] | Lahnsteiner F, Patzner RA (2007). Sperm morphology and ultrastructure in fish. In: Alavi SMH, Cosson J, Coward K, Rafiee G (eds) Fish spermatology. Oxford: Alpha Science Ltd. pp 1–61. |
[11] | Mattei X (1988). The flagellar apparatus of spermatozoa in fish. Ultrastructure and Evolution Biol Cell 63:151–158. |
[12] | Luo D, Sun JJ, Lu X et al. (2011). Comparative sperm ultrastructure of three species in Siniperca (Teleostei: Perciformes: Sinipercidae) Micron 42:884-891. |
[13] | Johnson CH, Clapper DL, Winkler MM et al. (1983). A volatile inhibitor immobilizes sea urchin sperm in semen by depressing intracellular pH. Dev Biol 98:493–501. |
[14] | Christen RW, Schackmann RW, Shapiro BM (1982). Elevation of intracellular pH activates respiration and motility of sperm of the sea urchin Strongylocentrotus purpuratus. J Biol Chem 257:14881–14890. |
[15] | Lee, HC, Johnson C, Epel D (1983). Changes in internal pH associated with the initiation of motility and acrosome reaction of sea urchin sperm. Dev Biol 95: 31–45 |
[16] | Morisawa M, Suzuki K (1980). Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts. Science 210:1145–1147. |
[17] | Perchec G, Cosson J, Andre´ F et al. (1993). Spermatozoa motility of trout (Oncorhynchus mykiss) and carp (Cyprinus carpio). J Appl Ichthyol 9:129–149. |
[18] | Billard R, Cosson J, Crim LW et al. (1995a). Sperm physiology and quality. In: Bromage, N, Roberts R (eds) Broodstock Management and Egg and Larval Quality. Blackwell, Oxford, pp 25– 52. |
[19] | Kime DE, Van Look KJW, McAllister BG et al. (2001). Computer assisted sperm analysis (CASA) as a tool for monitoring sperm quality in fish. Comp Biochem Physiol 130:425– 433. |
[20] | Kime DE, Tveiten H (2002). Unusual motility characteristics of sperm of the spotted wolffish. J Fish Biol 61:1549–1559. |
[21] | Elofsson H, McAllister BG, Kime DE et al. (2003a). Long lasting sticklebacks sperm; is ovarian fluid a key to success in freshwater? J Fish Biol 63:240–253. |
[22] | Elofsson H, Van Look K, Borg B et al. (2003b). Influence of salinity and ovarian fluid on sperm motility in the fifteen spine stickleback. J Fish Biol 63:1429–1438. |
[23] | Lahnsteiner F (2011). Spermatozoa of the teleost fish Perca fluviatilis (perch) have the ability to swim for more than two hours in saline solutions. Aquaculture 314: 221-224. |
[24] | Lahnsteiner F and Patzner RA (2008). Sperm morphology and ultrastructure in fish. In: Alavi SMH, Cosson J,Coward K, Rafiee G (eds) Fish Spermatology. Alpha Science Ltd, Oxford, UK, pp 1–62. |
[25] | Alavi SMH, Cosson J (2005b). Sperm motility and fertilizing ability in the Persian sturgeon Acipenser persicus. Aquacult Res 36:841-850. |
[26] | Vladic TV, Afzelius BA, Bronnikov GE (2002). Sperm quality as reflected through morphology in salmon alternative life histories. Biol Reprod 66:98–105. |
[27] | Gage MJG, MacFarlane CP, Yeates S et al. (2004). Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success. Curr Biol 14:44–47. |
[28] | Cosson J, Billard R, Cibert C et al. (1999). Ionic factors regulating the motility of fish sperm. In: Gagnon C (ed) he male gamete: From basic to clinical applications. Cache Rive Press, Vienna, IL, pp 161–186. |
[29] | Morisawa M, Oda S, Yoshida M et al. (1999) Transmembrane signal transduction for the regulation of sperm motility in fishes and ascidians. In: Gagnon C (ed) The male gamete: From basic to clinical applications. Cache Rive Press, Vienna, IL, pp 149–160. |
[30] | Alavi SMH, Cosson J (2006). Sperm motility in fishes. (II) Effects of ions and osmolality: a review. Cell Biol Int 30(1):1-14. |
[31] | Gibbons BH, Gibbons IR, Baccetti B (1983). Structure and motility of the 9+0 flagellum of eel spermatozoa. J Submicr Cytol Path 15:15–21. |
[32] | Cherr GN, Clark WN (1984). Acrosome reactions in sperm from the white sturgeon, Acipenser transmontanus. J Exp Zool 232:129–139. |
[33] | Xu Y, Xiong Q (1988). The process of fertilization of Acipenser sinensis Grey observed by SEM. Acta Zool Sin 34:325–328. |
[34] | DiLauro MN, Kaboord W, Walsh RA (1998). Sperm-cell ultrastructure of North American sturgeons. I. The Atlantic sturgeon (Acipenser oxyrhynchus). Can J Zool 76:1822–1836. |
[35] | DiLauro MN, Kaboord WS, Walsh RA (1999). Sperm-cell ultrastructure of North American sturgeons. II. The shortnose sturgeon (Acipenser brevirostrum, Lesueur, 1818). Can J Zool 77:321–330. |
[36] | DiLauro MN, Kaboord WS, Walsh RA (2000). Sperm-cell ultrastructure of North American sturgeon. I. The Atlantic sturgeon (Acipenser oxyrhynchus). Can J Zool 78:438–447. |
[37] | DiLauro MN, Walsh RA, Peiffer M (2001). Sperm-cell ultrastructure of North American sturgeons. IV. The pallid sturgeon (Scaphirhynchus albus) Forbes and Richardson, 1905. Can J Zool 79:802–808. |
[38] | Afzelius BA (1978). Fine structure of the garfish spermatozoan. J Ultrastruct Res 64:309–314. |
[39] | Ro¨heli A, Roth H, Medem F (1950). Elektronoptische Untersuchungen der Struhturveranderung agglutinierter Fishcpermienen. Exp Cell Res 1:115–126. |
[40] | Mattei X (1969). Spermiogenese comparee´ des poissons. In: Baccetti B (ed) Comparative spermatology. Academic Press, New York, pp 57–69. |
[41] | Billard R (1970). Ultrastructure compare´e de spermatozoides de quelquest poissons te´le´oste´ens. In: Baccetti B (ed) Spermatologia Comparata, vol 137. Quaderno, p 71–80. |
[42] | Emaljanova NG, Makeeva AP (1985). Ultrastructure of spermatozoids of some cyprinid fishes (Cyprinidae). J Appl Ichthyol 25:137–144. |
[43] | Lahnsteiner F (2003). The spermatozoa and eggs of the cardinal fish. J Fish Biol 62:115–128. |
[44] | Todd PR (1976). Ultrastructure of the spermatozoa and spermiogenesis in New Zealand freshwater eels (Anquillidae). Cell Tissue Res 171:221–232. |
[45] | Gibbons BH, Baccetti B, Gibbons IR (1985). Live and reactivated motility in the 9+0 flagellum of anquilla sperm. Cell Motil 5:333–351. |
[46] | Pecio A, Rafinski J (1994). Structure of the testes, spermatozoa and spermatozeugmata of Mimagoniates-barberi (Regan), (teleostei. characidae), and internally fertilizing, oviparous fish. Acta Zool 75:179–185. |
[47] | Okamura A, Motonobu T (1999). Spermatozoa of Conger myriaster observed by electron microscopy. Zool Sci 16:927–933. |
[48] | Retzius G (1906). Die Spermie der Leptokardier, Teleostier, und Ganoiden. Biol Untersuchungen g Retzius 12:103–115. |
[49] | Billard R (1983). Ultrastructure of trout spermatozoa: changes after dilution and deep freezing. Cell Tissue Res 228:205–218. |
[50] | Lowman FG (1953). Electron microscope studies of silver salmon spermatozoa (Oncorhynchus kisutch W.). Exp Cell Res 5:335–360. |
[51] | Jaspers EJ, Avault JW, Roussel JD (1976). Spermatozoal morphology and ultrastructure of channel catfish, Ictalarus punctatus. Tam Fish Soc 150:475–480. |
[52] | Stanley HP (1969). An electron microscope study of spermiogenesis in the teleost fish Oligocottus moculosus. J Ultrastruct Res 27:230–243. |
[53] | Ciereszko A, Glogowski J, Dabrowski K (2000). Biochemical characteristics of seminal plasma and spermatozoa of fresh water fishes. In: Tiersch TR, Mazik PM (eds) Cryopreservation in aquatic species. Louisiana,WAS, Baton Rouge, pp 20-48. |
[54] | Linhart O, Slechta V, Slavik T (1991). Fish sperm composition and biochemistry. Bull Inst Zool Acad Sin Monogr 16:285-311. |
[55] | Coward K, Bromage NR, Hibbitt O et al. (2002). Gametogenesis, fertilization and egg activation in teleost fish. Rev Fish Biol Fish 12:33-58. |
[56] | Ingermann R, Holcomb M, Robinson ML et al. (2002). Carbon dioxide and pH affect sperm motility of white sturgeon (Acipenser transmontanus). J Exp Biol 205:2885-2890. |
[57] | Itoh A, Inaba K, Ohtake H et al. (2003). Characterization of a cAMP-dependent protein kinase catalytic subunit from rainbow trout spermatozoa.Biochem Biophys Res Commun 305:855-861. |
[58] | Kowalski R, Wojtczak M, Glogowski J et al. (2003). Gelatinolytic and antitrypsin activities in seminal plasma of common carp: relationship to blood, skin mucus and spermatozoa. Aquat Living Resour 16:438-444. |
[59] | Wojtczak M, Glogowski J, Koldras M et al. (2003). Characterization of protease inhibitors of seminal plasma of cyprinids. Aquat Living Resour 16:461-465. |
[60] | Billard R (1986). Spermatogenesis and spermatology of some teleost fish species. Reprod Nutr Dev 2:877-920. |
[61] | Rurangwa E, Kime DE, Ollevier F et al. (2004). Measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture 234:1-28. |
[62] | Alavi SMH, Cosson J (2005a). Sperm motility in fishes: (I) effects of temperature and pH. Cell Biol Int 29:101-110. |
[63] | Piros B, Glogowski J, Kolman R et al. (2002). Biochemical characterization of Siberian sturgeon Acipenser baeri and starlet, Acipenser ruthenus, milt plasma and spermatozoa. Fish Physiol Biochem 26:289-295. |
[64] | Billard R, Cosson J, Crim LW et al. (1995a). Sperm physiology and quality. In: Bromage, N, Roberts R (eds) Broodstock Management and Egg and Larval Quality. Blackwell, Oxford, pp 25– 52. |
[65] | Billard R, Cosson J, Perchec G et al. (1995b). Biology of sperm and artificial reproduction in carp. Aquaculture 124:95–112. |
[66] | Kruger JC, Smith GL, Van Vuren JHJ et al. (1984). Some chemical and physical characteristics of the semen of Cyprinus carpio and Oreochromis mossambicus. J Fish Biol 24: 263–272. |
[67] | Morisawa M, Suzuki K, Shimizu H (1983). Effect of osmolality and potassium on motility of spermatozoa from freshwater cyprinid fishes. J Exp Biol 107:95–103. |
[68] | Gosh RI (1985). Energeticeskij obmen polovych kletok I embrionoy u ryb Kiev. Naukova Dumka p. 147 (in Russian). |
[69] | Linhart O, Cosson J, Mims SD (2003a). Effects of ions on the motility of fresh and demembranated sperm of common carp (Cyprinus carpio) and paddlefish (Polyodon spathula). Fish Physiol Biochem 28:203-205. |
[70] | Linhart O, Mims SD, Boris GB (2003b). Ionic composition and osmolality of paddlefish (Polyodon spathula, Acipenseriformes) seminal fluid. Aquacult Int 11:357-368. |
[71] | Linhart O, Rodina M, Bastl J et al. (2003c). Urinary bladder, ionic composition of seminal fluid and urine with characterization of sperm motility in tench (Tinca tinca L.). J Appl Ichthyol 19:177-181. |
[72] | Hwang PC, Idler DR (1969). A study of major cations, osmotic pressure, and pH in seminal components of Atlantic salmon. J Fish Res Board Can 26:413–419. |
[73] | Glogowski J, Kwasnik M, Iros B et al. (2000). Characterization of rainbow trout milt collected with a catheter: semen parameters and cryopreservation successes. Aquat Res 31: 289-296. |
[74] | Lahnsteiner F, Berger B, Weismann T et al. (1996). Motility of spermatozoa of Alburnus alburnus (Cyprinidae) and its relationship to seminal plasma composition and sperm metabolism. Fish Physiol Biochem 15:167–179. |
[75] | Toth GP, Ciereszko A, Christ SA et al. (1997). Objective analysis of sperm motility in the Lake sturgeon, Acipenser fulvescens: activation and inhibition conditions. Aquaculture 154:337-348. |
[76] | Ginsburg AS (1963). Sperm-egg association and its relationship to the activation of the egg in salmonid fishes. J Embr Exp Morpho 11:13-33. |
[77] | Billard R, Cosson J, Crim LW (1993). Motility of fresh and aged halibut sperm. Aquat Living Resour 6:67-75. |
[78] | Nagahama Y (1994). Endocrine regulation of gametogenesis in fish. Int J Dev Biol 38:217–29. |
[79] | Ciereszko A (2008). Chemical composition of seminal plasma and its physiological relationship with sperm motility, fertilizing capacity and cryopreservation success in fish. In: Alavi SMH, Cosson J, Coward R, Rafiee G (eds) Fish Spermatology. Alpha Science Ltd, Oxford, pp 215–240. |
[80] | Lahnsteiner F, Berger B, Weismann T et al. (1998). Determination of semen quality of the rainbow trout by sperm motility, seminal plasma parameters and spermatozoal metabolism. Aquaculture 163:163–181. |
[81] | Alavi SMH, Cosson J, Karami M et al. (2004). Chemical composition and osmolality of seminal fluid of Acipenser persicus; their hysiological relationship with sperm motility. Aquac Res 35:1238–1243. |
[82] | Rosengrave P, Taylor H, Montgomerie R et al. (2009). Chemical composition of seminal and ovarian fluids of Chinook salmon (Oncorhynchus tshawytscha) and their effects on spermmotility traits. Comp Biochem Physiol A 152:123–129. |
[83] | Alavi SMH, Gela D, Rodina M et al. (2011). Roles of osmolality, calcium — Potassium antagonist and calcium in activation and flagellar beating pattern of sturgeon sperm Comp Biochem Physiol - Part A: 160:166-174. |
[84] | Stoss J (1983). Fish gamete preservation and spermatozoan physiology. In: Hoar WS, Randall DJ, Donaldson EM (eds) Fish physiology 1X B. Academic Press, New York, pp 305-350. |
[85] | Williot P, Kopeika EF, Goncharov BF (2000). Influence of testis state, temperature and delay in semen collection on spermatozoa motility in the cultured Siberian sturgeon (Acipenser baeri Brandt). Aquaculture 189:53-61. |
[86] | Belova NV (1981). Ecological and physiological characteristics of sperm of pond Cyprinid fishes. Vopr Ichtiol 21:525-536 (in Russian). |
[87] | Jezierska B, Witeska M (1999). The effect of time and temperature on motility of spermatozoa of common and grass carp. Elec J Polish Agricult Univers 2:1-8. ! http://www.ejpau.media.pl/series/volume2/issue2/fisheries/art-04.html. |
[88] | Ma´ria´n T, Krasznai Z, Balkay L et al. (1997). Role of extra-and intracellular pH in the sperm motility. Hyperosmosis modifies regulation of the Na+/H+ exchanger in the carp sperm. Cytometry 27:374–382. |
[89] | Boitano S, Omoto CK (1991). Membrane hyperpolarization activates trout sperm without an increase in intracellular pH. J Cell Sci 98:343-349. |
[90] | Boitano S, Omoto CK (1992). Trout sperm swimming patterns and role of intracellular Ca2+ Cell Motil Cytoskeleton 21:74–82. |
[91] | Redondo-Muller C, Cosson MP, Cosson J et al. (1991). In vitro maturation of the potential for movement of carp spermatozoa. Mol Reprod Dev 29:259-270. |
[92] | Perchec-Poupard G, Gatti JL, Cosson J et al. (1997). Effects of extracelular environment on the osmotic signal transduction involved in activation of motility of carp spermatozoa. J Reprod Fertil 110:315-327. |
[93] | Gatti JL, Billard R, Christen R (1990). Ionic regulation of the plasma membrane potential of rainbow trout (Salmo gairdneri) sperm: role in the initiation of motility. J Cell Physiol 143:546-554. |
[94] | Krasznai Z, Marian T, Balkay L et al. (1995). Potassium channels regulate hypo-osmotic shock-induced motility of Common Carp, Cyprinus carpio, sperm. Aquaculture 129:123-128. |
[95] | Krasznai Z, Marian T, Izumi H et al. (2000). Membrane hyper polarization removes inactivation of Ca2+ channels leading to Ca2+ influx and initiation of sperm motility in the common carp. Biophysics 97:2052-2067. |
[96] | Schlenk W, Kahmann H (1938). The chemical composition of seminal fluids and their physiological importance study with trout sperm. Biochem Zool 295:283-301. |
[97] | Morisawa M, Ishida K (1987). Short-term changes in levels of cyclic AMP, adenylate cyclase, and phosphodiesterase during the initiation of sperm motility in rainbow trout. J Exp Zool 242:199–204. |
[98] | Tanimoto S, Morisawa M (1988). Roles for potassium and calcium channels in the initiation of sperm motility in rainbow trout. Dev Growth Differ 30:117–124. |
[99] | Kho KH, Tanimoto S, Inaba K et al. (2001). Transmembrane cell signaling for the initiation of trout sperm motility: roles of ion channels and membrane hyperpolarization for cyclic AMP synthesis. Zool Sci 18:919-928. |
[100] | Linhart O, Cosson J (1997). Cryopreservation of Carp (Cyprinus carpio L.) spermatozoa: the influence of external K+ and Na+ on post-thaw motility. Pol Arch Hydrobiol 44(1&2):273-277. |
[101] | Krasznai Z, Morisawa M, Morisawa S (2003). Role of ion channels and membrane potential in the initiation of carp sperm motility. Aquat Living Resour 16:445-449. |
[102] | Morita M, Takemura A, Okuno M (2003). Requirement of Ca2+ on activation of sperm motility in euryhaline tilapia Oreochromis mossambicus. J Exp Biol 206:913–921. |
[103] | Tanimoto S, Kudo Y, Nakazawa T et al (1994). Implication that potassium flux and increase in intracellular calcium are necessary for the initiation of sperm motility in salmonid fishes. Mol Reprod Dev 39:409–414. |
[104] | Ma´ria´n T, Krasznai Z, Balkay L et al. (1993). Hypo-osmotic shock induces an osmolality-dependent permeabilization and structural changes in the membrane of carp sperm. Histochem Cytochem 41:291–297. |
[105] | Oda S, Morisawa M (1993). Rises of intracellular Ca2+ and pH mediate the initiation of sperm motility by hyperosmolality in marine teleosts. Cell Moti Cytos 25:171-178. |
[106] | Takai H, Morisawa M (1995). Change in intracellular K+ concentration caused by external osmolality change regulates sperm motility of marine and freshwater teleosts. J Cell Sci 108:1175-1181. |
[107] | Yang H, Hazelwood L,Walter RB et al. (2006). Effect of osmotic immobilization on refrigerated storage and cryopreservation of sperm from a viviparous fish, the green swordtail Xiphophorus helleri. Cryobiology 52:209–218. |
[108] | Yao Z, Crim LW, Richardson GF et al. (2000). Motility, fertility and ultrastructural changes of ocean pout Macrozoarces americanus L. sperm after cryopreservation. Aquaculture 181:361–375. |
[109] | Huang C, Dong Q, Walter RB et al. (2004). Initial studies on sperm cryopreservation of a live-bearing fish, the green swordtail Xiphophorus helleri. Theriogenology 62:179–194. |
[110] | Yang H, Tiersch TR (2009). Sperm motility initiation and duration in a euryhaline fish, medaka (Oryzias latipes). Theriogenology 72:386–392. |
[111] | Morita M, Takemura A, Okuno M (2004). Acclimation of sperm motility apparatus in seawater-acclimated euryhaline tilapia Oreochromis mossambicus. J Exp Biol 207:337–345. |
[112] | Islam M Sadiqul (2006). Acrosome reaction in marine animals: gateway to sperm fusion with the egg. Asian J Cell Biol 1:14-28. |
[113] | Psenicka M, Rodina M, Nebesarova J et al. (2006). Ultrastructure of spermatozoa of tench Tinca tinca observed by means of scanning and transmission electron microscopy. Theriogenology 66:1355-1363. |