[1] | Y. Altmann, "Nonlinear unmixing of hyperspectral images," PhD. Thesis, INP Toulouse, October 2013. |
[2] | Fauvel, M.; Tarabalka, Y.; Benediktsson, J.; Chanussot, J.; Tilton, J., “Advances in Spectral-Spatial Classification of Hyperspectral Images,” Proceedings of the IEEE, vol.101, no.3, pp.652-675, March 2013. |
[3] | Rajabi, R.; Ghassemian, H., “Hyperspectral Data Unmixing Using Gnmf Method and Sparseness Constraint,” Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, pp. 1450-1453, July 2013. |
[4] | Abderrahim Halimi, Yoann Altmann, Nicolas Dobigeon and Jean-Yves Tourneret, “Nonlinear Unmixing of Hyperspectral Images Using a Generalized Bilinear Model”, Geoscience and Remote Sensing, IEEE Transactions on, vol.49, no.11, pp.4153-4162, Nov. 2011. |
[5] | Dobigeon, N.; Tourneret, J.-Y.; Richard, C.; Bermudez, J.C.M.; McLaughlin, S.; Hero, A.O., "Nonlinear Unmixing of Hyperspectral Images: Models and Algorithms," Signal Processing Magazine, IEEE, vol.31, no.1, pp.82,94, Jan. 2014. |
[6] | Chen, J.; Richard, C.; Honeine, P., "Nonlinear Unmixing of Hyperspectral Data Based on a Linear-Mixture/ Nonlinear-Fluctuation Model," Signal Processing, IEEE Transactions on , vol.61, no.2, pp.480, 492, Jan.15, 2013. |
[7] | Xiao, H.; Liu, H.; Chen, J., “Joint Supervised-Unsupervised Nonlinear Unmixing of Hyperspectral Images Using Kernel Method,” Proceedings of the 2014 Fifth International Conference on Intelligent Systems Design and Engineering Applications, pp. 582-585, 2014. |
[8] | Yokoya, N.; Chanussot, J.; Iwasaki, A., "Generalized bilinear model based nonlinear unmixing using semi-nonnegative matrix factorization," in Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, pp.1365-1368, 22-27 July 2012. |
[9] | M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data,” in Proc. SPIE Spectrom. V, 1999, vol. 3753, pp. 266–277. |
[10] | J. Boardman, “Atomatic spectral unmixing of AVIRIS data using convex geometry concepts,” in Proc. AVIRIS Workshop, 1993, vol. 1, pp. 11–14. |
[11] | A. Zare, "Hyperspectral endmember detection and band selection using bayesian methods", Ph.D. dissertation, Univ. Florida, Gainesville, 2008. |
[12] | J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component analysis: A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005. |
[13] | J. Li and J. M. Bioucas-Dias, “Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data,” in Proc. IEEE IGARSS, 2008, pp. III-250–III-253. |
[14] | T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “A convex analysis- based minimum-volume enclosing simplex algorithm for hyperspectral unmixing,” IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418–4432, 2009. |
[15] | L. Miao and H. Qi, “Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765–777, 2007. |
[16] | Broadwater, J. and Banerjee, A. “A comparison of kernel functions for intimate mixture models.” In Proc. IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pages 1-4, 2009. |
[17] | Broadwater, J., Chellappa, R., Banerjee, A., and Burlina, P. (2007). “Kernel fully constrained least squares abundance estimates.” In Proc. IEEE Int. Conf. Geosci. and Remote Sensing (IGARSS), pages 4041_4044, Barcelona, Spain. |
[18] | Y. Altmann, A. Halimi, N. Dobigeon and J.-Y. Tourneret, "Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery," IEEE Trans. Image Processing, vol. 21, no. 6, pp. 3017-3025, June 2012. |
[19] | Yoann Altmann, Nicolas Dobigeon, Steve McLaughlin and Jean-Yves Tourneret, "Unsupervised nonlinear unmixing of hyperspectral images using gaussian processes", IEEE, 2012. |
[20] | Rita Ammanouil, Andr´e Ferrari, and C´edric Richard, "A graph laplacian regularization for hyperspectral data unmixing", Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference, 2015. |
[21] | S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011. |
[22] | M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “Blind Separating convolutive post non-linear mixtures,” in Proc. 3rd ICA Workshop, San Diego, CA, 2001, pp. 138–143. |
[23] | C. Jutten and J. Karhunen, “Advances in nonlinear blind source separation,” in Proc. Int. Symp. Independ. Compon. Anal. Blind Signal Separat. (ICA), 2003, pp. 245–256. |
[24] | Y. Altmann, A. Halimi, N. Dobigeon and J.-Y. Tourneret, "Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Prague, Czech Republic, May 2011, pp. 1009-1012. |
[25] | M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, “Total variation spatial regularization for sparse hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 11, pp. 4484–4502, 2012. |
[26] | J. Chen, C. Richard, and P. Honeine, “Nonlinear estimation of material abundances in hyperspectral images with ℓ1-norm spatial regularization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 5, pp. 2654 – 2665, 2014. |
[27] | K. KRISHNAMURTHYy, M. RAGINSKY, AND R. WILLETTy, “Multiscale Photon-Limited Spectral Image Reconstruction”. |
[28] | “ENVI User’s Guide Version 4.0,” RSI, Boulder, CO, Sep. 2003 |
[29] | N. D. Lawrence, “Gaussian process latent variable models for visualisation of high dimensional data,” in NIPS, Vancouver, Canada, 2003. |
[30] | Chang Li, Yong Ma, Xiaoguang Mei, Fan Fan, Jun Huang and Jiayi Ma, “Sparse Unmixing of Hyperspectral Data with Noise Level Estimation” 2017. |
[31] | Xiaoguang Mei, Yong Mei, Chang Li, Fan Fan a, Jun Huang, Jiayi Ma, "Robust GBM hyperspectral image unmixing with superpixel segmentation based low rank and sparse representation" 2018. |