[1] | Kim, K. I., Jung, K., Park, S. H., and Kim, H. J., 2002. Support vector machines for texture classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, 1542-1550 |
[2] | Plamondon, R., and Srihari, S. N., 2000. On-line and off-line handwriting recognition: A comprehensive survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, 63-84 |
[3] | Burges, C. J. C., 1998. A Tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, Edited by Ussama Fayyad, Vol. 2, 121-167 |
[4] | Schölkopf, B., 1997. Support vector learning, Thèse de PhD: Université de Berlin, 173 pages |
[5] | Keysers, D., Paredes, R., Ney, H., and Vidal E., 2001. Combination of tangent vectors and local representations for handwritten digit recognition, Lecture Notes in Computer Science, Vol. 2396, 538-547 |
[6] | Nemmour, H., and Chibani, Y., 2010. Handwritten digit recognition based on a Neural-SVM combination, to appear in International journal of computers and applications, Vol, 32, 104-109 |
[7] | Trier, O. D., Jain, A. K., and Taxt. T., 1996. Feature extraction methods for character recognition—A survey, Pattern recognition, Vol. 29, 641-662 |
[8] | Nemmour, H., and Chibani, Y., 2009. Handwritten alphanumeric character recognition based on support vector machines and combination of descriptors, ACM International Conference on Intelligent Computing and Information Systems ICICIS’09, 19-22 March, Cairo |
[9] | Chen, G. Y., Bui, T. D., and Krzyzak, A., 2006. Rotation invariant feature extraction using ridgelet and Fourier transforms; Pattern Analysis and Application Journal, Vol. 9, 83-93 |
[10] | Yang, L., Suen, C. Y., Bui, T. D., et Zhang, P., 2005. Discrimination of similar handwritten numerals based on invariant curvature features, Pattern Recognition Journal, Vol. 38, 947-963 |
[11] | Broumandnia, A., Shanbehzadeh, J., and Varnoosfaderani, M. R., 2008. Persian/arabic handwritten word recognition using M-band packet wavelet transform, Image Vision and Computing Journal, Vol.26, 829-842 |
[12] | Simard, P., Le Cun, Y., Denker, J., and Victorri, B., 1993. Efficient pattern recognition using a new transformation distance, Advances in Neural Information Processing Systems, Vol. 5, 50-58 |
[13] | Simard, P., Le Cun, Y., Denker, J., et Victorri, B., 1998. Transformation invariance in pattern recognition — tangent distance and tangent propagation, Lecture Notes on Computer Science, Vol. 1524, 239-274 |
[14] | Keysers, D., Mcherey, W., and Ney, H., 2004. Adaptation in statistical pattern recognition using tangent vectors, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, 269-274 |
[15] | Vapnik, V., 1995. The nature of statistical learning theory, Springer-Verlag, New York |
[16] | Hsu, C-W., and Lin, C-J., 2002. A comparison of Methods for Multi-class Support Vector Machines, IEEE Transactions on Neural Networks, Vol. 13, 415-425 |
[17] | Joachims, T., 1998. Making large scale SVM Learning practical, MIT Press: Advances in Kernel Methods — Support Vector Learning, B. Sch¨olkopf, C. J. C. Burges, and A. J. Smola Editors, 169–184 |
[18] | D. E. Rumelhart, G. E. Hinton, & R. J. Williams, Learning internal representations by error propagation, MIT Press (Parallel Distributed Processing: Explorations in the microstructure of Cognition), 1, 1986, 318-362 |
[19] | DeCoste, D., and Schölkopf, B., 2002. Training invariant support vector machines, Machine Learning Journal, Vol. 46, 161-190 |
[20] | Haasdonk, B., and Keysers, D., 2002. Tangent distance kernels for support vector machines, In Proc. Of the 16th International Conference on Pattern Recognition (ICPR), vol. 2, pp.864-868, 2002 |
[21] | Nemmour, H., and Chibani, Y., 2008. Incorporating Tangent Vectors in SVM Kernels for Handwritten Digit Recognition, the 11th International Conference on Frontiers in Handwriting Recognition, ICFHR’08, 19-21 Août, Montréal, Canada |