[1] | Chong JJ, Yang X, Don CW, Minami E, Liu YW, et al. (2014) Human embryonic-stem- cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510: 273-277. |
[2] | Silvestrea JS, Menaschéa P (2015) The evolution of the stem cell theory for heart failure. E-BioMedicine Dec 2: 1871-1879. |
[3] | Synnergren J, Améen C, Jansson A, Sartipy P (2012) Global transcriptional profiling reveals similarities and differences between human stem cell-derived cardiomyocyte clusters and heart tissue. Physiol Genomics 44: 245-258. |
[4] | Mummery C, Ward-Van Oostwaard D, Doevendans P, Spijker R, Van den Brink S, et al. (2003) Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation 107: 2733-2740. |
[5] | Robertson C, Tran DD, George SC (2013) Concise review: Maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31: 829-837. |
[6] | Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, et al. (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. Circ Res 111: 344-358. |
[7] | O'Hara T, Virág L, Varró A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLOS Comput Biol 7: e1002061. |
[8] | Pillekamp F, Haustein M, Khalil M, Emmelheinz M, Nazzal R, et al. (2012) Contractile properties of early human embryonic stem cell-derived cardiomyocytes: Beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy. Stem Cells Dev 21: 2111-2121. |
[9] | Schaaf S, Shibamiya A, Mewe M, Eder A, Stohr A, et al. (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6: e26397. |
[10] | Lee AS, Tang C, Rao MS, Weissman IL, Wu JC (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19: 998-1004. |
[11] | Srivastava D, Yu P (2015) Recent advances in direct reprogramming. Cur Opin Genet 34: 77-81. |
[12] | Ebert AD, Diecke S, Chen IY, Joseph CW (2015) Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: Where do we stand? EMBO Mol Med 7: 1090-1103. |
[13] | Fu JD, Stone NR, Liu L, Spencer CI, Qian L, et al. (2013) Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep 1: 235-247. |
[14] | Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, et al. (2013) Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci USA 110: 12667-12672. |
[15] | Ferica NT, Radisica M, (2016) Strategies and challenges to myocardial replacement therapy. Stem Cells Translational Medicine 5: 5-9. |
[16] | Miyagawa S, Fukushima S, Imanishi Y, Kawamura T, Mochizuki-Oda N, et al. (2016) Building a new treatment for heart failure-transplantation of induced pluripotent stem cell-derived cells into the heart. Curr Gene Ther 16: 5-13. |
[17] | Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, et al. (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial. The Lancet 378: 1847-1857. |
[18] | Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LEJ, et al. (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. The Lancet 379 895-904. |
[19] | Zakharova L, Nural-Guvener H, Feehery L, Popovic-Sljukic S, Gaballa MA (2015) Transplantation of epigenetically modified adult cardiac C-kit+ cells retards remodeling and improves cardiac function in ischemic heart failure model. Stem Cells Transl Med 4: 1086-1096. |
[20] | Khatiwala R, Cai C (2016) Strategies to enhance the effectiveness of adult stem cell therapy for ischemic heart diseases affecting the elderly patients. Stem Cell Rev. |
[21] | Zakharova L, Nural-Guvener H, Nimlos J, Popovic S, Gaballa MA (2013) Chronic heart failure is associated with transforming growth factor beta-dependent yield and functional decline in atrial explant-derived c-Kit+ cells. J Am Heart Assoc 2: e000317. |
[22] | Zakharova L, Nural-Guvener H, Gaballa MA (2012) Cardiac explant-derived cells is regulated by Notch-modulated mesenchymal transition. PLoS One 7: e37800. |
[23] | Samse K, Hariharan N, Sussman MA (2016) Personalizing cardiac regenerative therapy at the heart of Pim1 Kinase. Pharmacol Res 103: 13-16. |
[24] | Boekstegers P, Kupatt C (2004) Current concepts and applications of coronary venous retroinfusion. Basic Res Cardiol 99: 373-381. |
[25] | Kupatt C, Hinkel R, Lamparter M, Von Brühl ML, Pohl T, et al. (2005) Retroinfusion of embryonic endothelial progenitor cells attenuates ischemia-reperfusion injury in pigs: role of phosphatidylinositol 3-kinase/AKT kinase. Circulation 112: I117-I122. |
[26] | Hatori N, Sjöquist PO, Regårdh C, Rydén L (1991) Pharmacokinetic analysis of coronary sinus retroinfusion in pigs. Ischemic myocardial concentrations in the left circumflex coronary arterial area using metoprolol as a tracer. Cardiovasc Drugs Ther 5: 1005-1010. |
[27] | Rydén L, Tadokoro H, Sjöquist PO, Regardh C, Kobayashi S, et al. (1991) Pharmacokinetic analysis of coronary venous retroinfusion: a comparison with anterograde coronary artery drug administration using metoprolol as a tracer. J Am Coll Cardiol 18: 603-612. |
[28] | Zakharova L, Nural-Guvener H, Feehery L, Popovic S, Nimlos J, et al. (2014) Retrograde coronary vein infusion of cardiac explant-derived c-kit+ cells improves function in ischemic heart failure. Heart and Lung Transplant 33: 644-653. |
[29] | Murry CE (2002) Taking the death toll after cardiomyocyte grafting: a reminder of the importance of quantitative biology. J Mol Cell Cardiology 34: 251-253. |
[30] | Sun X, Nunes SS (2015) Overview of hydrogel-based strategies for application in cardiac tissue regeneration. Biomed Mater 10: 034005. |
[31] | Gaballa MA, Sunkomat JN, Thai H, Morkin E, Ewy G, et al. (2006) Grafting an acellular 3-dimensional collagen scaffold onto a non-transmural infarcted myocardium induces neo-angiogenesis and reduces cardiac remodeling. J Heart Lung Transplant 25: 946-954. |
[32] | Naito H, Melnychenko I, Didié M, Schneiderbanger K, Schubert P, et al. (2006) Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114: I72-I78. |
[33] | Riegler J, Gillich A, Shen Q, Gold JD, Wu JC (2014) Cardiac tissue slice transplantation as a model to assess tissue-engineered graft thickness, survival, and function. Circulation 130: S77-S86. |
[34] | Zakharova L, Mastroeni D, Mutlu N, Molina M, Goldman S, et al. (2010) Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc Res 87: 40-49. |
[35] | Masuda S, Shimizu T (2016) Three-dimensional cardiac tissue fabrication based on cell sheet technology. Adv Drug Deliv Rev 96: 103-109. |
[36] | Lancaster J, Juneman E, Hagerty T, Do R, Hicks M, et al. (2010) Viable fibroblast matrix patch induces angiogenesis and increases myocardial blood flow in heart failure after myocardial infarction. Tissue Eng Part A 16: 3065-3073. |
[37] | Lancaster JJ, Juneman E, Arnce SA, Johnson NM, Qin Y, et al. (2014) An electrically coupled tissue-engineered cardiomyocyte scaffold improves cardiac function in rats with chronic heart failure. J Heart Lung Transplant 33: 438-445. |
[38] | Thai HM, Juneman E, Lancaster J, Hagerty T, Do R, et al. (2009) Implantation of a three- dimensional fibroblast matrix improves left ventricular function and blood flow after acute myocardial infarction. Cell Transplant 18: 283-295. |
[39] | Wei K, Serpooshan V, Hurtado C, Diez-Cuñado M, Zhao M, et al. (2015) Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525: 479-485. |
[40] | Smart N, Bollini S, Dubé KN, Vieira JM, Zhou B, et al. (2012) Myocardial regeneration: Expanding the repertoire of thymosin β4 in the ischemic heart. Ann N Y Acad Sci 1269: 92-101. |
[41] | Desai AS, Mcmurray JJ, Packer M, Swedberg K, Rouleau JL, et al. (2015) Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur Heart J 36: 1990-1997. |