[1] | S. Ling, Ed., Fibrous Proteins, vol. 2347. New York, NY: Springer US, 2021. doi: 10.1007/978-1-0716-1574-4. |
[2] | H. S. Salapare, S. Amigoni, and F. Guittard, “Bioinspired and Biobased Materials,” Macromol Chem Phys, vol. 220, no. 14, Jul. 2019, doi: 10.1002/macp.201900241. |
[3] | G. De Giorgio et al., “Silk Fibroin Materials: Biomedical Applications and Perspectives,” Bioengineering, vol. 11, no. 2, p. 167, Feb. 2024, doi: 10.3390/bioengineering11020167. |
[4] | I. Greving, M. Cai, F. Vollrath, and H. C. Schniepp, “Shear-Induced Self-Assembly of Native Silk Proteins into Fibrils Studied by Atomic Force Microscopy,” Biomacromolecules, vol. 13, no. 3, pp. 676–682, Mar. 2012, doi: 10.1021/bm201509b. |
[5] | T. Zhang et al., “Bridging biodegradable metals and biodegradable polymers: A comprehensive review of biodegradable metal–organic frameworks for biomedical application,” Prog Mater Sci, vol. 155, p. 101526, Jan. 2026, doi: 10.1016/j.pmatsci.2025.101526. |
[6] | A. R. Lalit Jajpura, “The Biopolymer Sericin: Extraction and Applications,” J Text Sci Eng, vol. 05, no. 01, 2015, doi: 10.4172/2165-8064.1000188. |
[7] | J. G. Hardy and T. R. Scheibel, “Composite materials based on silk proteins,” Prog Polym Sci, vol. 35, no. 9, pp. 1093–1115, Sep. 2010, doi: 10.1016/j.progpolymsci.2010.04.005. |
[8] | C. Vepari and D. L. Kaplan, “Silk as a biomaterial,” Prog Polym Sci, vol. 32, no. 8–9, pp. 991–1007, Aug. 2007, doi: 10.1016/j.progpolymsci.2007.05.013. |
[9] | K. Mori, K. Tanaka, Y. Kikuchi, M. Waga, S. Waga, and S. Mizuno, “Production of a Chimeric Fibroin Light-chain Polypeptide in a Fibroin Secretion-deficient Naked Pupa Mutant of the SilkwormBombyx mori,” J Mol Biol, vol. 251, no. 2, pp. 217–228, Aug. 1995, doi: 10.1006/jmbi.1995.0429. |
[10] | S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno, “Silk Fibroin of Bombyx mori Is Secreted, Assembling a High Molecular Mass Elementary Unit Consisting of H-chain, L-chain, and P25, with a 6:6:1 Molar Ratio,” Journal of Biological Chemistry, vol. 275, no. 51, pp. 40517–40528, Dec. 2000, doi: 10.1074/jbc.M006897200. |
[11] | K. Mita, S. Ichimura, and TharappelC. James, “Highly repetitive structure and its organization of the silk fibroin gene,” J Mol Evol, vol. 38, no. 6, Jun. 1994, doi: 10.1007/BF00175878. |
[12] | C. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z. Li, and J. Janin, “Silk fibroin: Structural implications of a remarkable amino acid sequence,” Proteins: Structure, Function, and Bioinformatics, vol. 44, no. 2, pp. 119–122, Aug. 2001, doi: 10.1002/prot.1078. |
[13] | L. P. Gage and R. F. Manning, “Internal structure of the silk fibroin gene of Bombyx mori. I The fibroin gene consists of a homogeneous alternating array of repetitious crystalline and amorphous coding sequences.,” J Biol Chem, vol. 255, no. 19, pp. 9444–50, Oct. 1980. |
[14] | K. Yamaguchi et al., “Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis,” J Mol Biol, vol. 210, no. 1, pp. 127–139, Nov. 1989, doi: 10.1016/0022-2836(89)90295-7. |
[15] | A. R. Murphy and D. L. Kaplan, “Biomedical applications of chemically-modified silk fibroin,” J Mater Chem, vol. 19, no. 36, p. 6443, 2009, doi: 10.1039/b905802h. |
[16] | B. Lotz and F. Colonna Cesari, “The chemical structure and the crystalline structures of Bombyx mori silk fibroin,” Biochimie, vol. 61, no. 2, pp. 205–214, Apr. 1979, doi: 10.1016/S0300-9084(79)80067-X. |
[17] | R. E. Marsh, R. B. Corey, and L. Pauling, “An investigation of the structure of silk fibroin,” Biochim Biophys Acta, vol. 16, pp. 1–34, Jan. 1955, doi: 10.1016/0006-3002(55)90178-5. |
[18] | O. Hakimi, D. P. Knight, F. Vollrath, and P. Vadgama, “Spider and mulberry silkworm silks as compatible biomaterials,” Compos B Eng, vol. 38, no. 3, pp. 324–337, Apr. 2007, doi: 10.1016/j.compositesb.2006.06.012. |
[19] | T. Asakura, A. Kuzuhara, R. Tabeta, and H. Saito, “Conformational characterization of Bombyx mori silk fibroin in the solid state by high-frequency carbon-13 cross polarization-magic angle spinning NMR, x-ray diffraction, and infrared spectroscopy,” Macromolecules, vol. 18, no. 10, pp. 1841–1845, Oct. 1985, doi: 10.1021/ma00152a009. |
[20] | L. Eisoldt, A. Smith, and T. Scheibel, “Decoding the secrets of spider silk,” Materials Today, vol. 14, no. 3, pp. 80–86, Mar. 2011, doi: 10.1016/S1369-7021(11)70057-8. |
[21] | R. Valluzzi, S. P. Gido, W. Muller, and D. L. Kaplan, “Orientation of silk III at the air-water interface,” Int J Biol Macromol, vol. 24, no. 2–3, pp. 237–242, Mar. 1999, doi: 10.1016/S0141-8130(99)00002-1. |
[22] | G. Xu, L. Gong, Z. Yang, and X. Y. Liu, “What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures,” Soft Matter, vol. 10, no. 13, pp. 2116–2123, Dec. 2013, doi: 10.1039/C3SM52845F. |
[23] | Z. Shao and F. Vollrath, “Surprising strength of silkworm silk,” Nature, vol. 418, no. 6899, pp. 741–741, Aug. 2002, doi: 10.1038/418741a. |
[24] | S. Chen, M. Liu, H. Huang, L. Cheng, and H.-P. Zhao, “Mechanical properties of Bombyx mori silkworm silk fibre and its corresponding silk fibroin filament: A comparative study,” Mater Des, vol. 181, p. 108077, Nov. 2019, doi: 10.1016/j.matdes.2019.108077. |
[25] | Multifunctionality of Polymer Composites. Elsevier, 2015. doi: 10.1016/C2013-0-13006-1. |
[26] | Q. L. Loh and C. Choong, “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size,” Tissue Eng Part B Rev, vol. 19, no. 6, pp. 485–502, Dec. 2013, doi: 10.1089/ten.teb.2012.0437. |
[27] | G. Perotto et al., “The optical properties of regenerated silk fibroin films obtained from different sources,” Appl Phys Lett, vol. 111, no. 10, Sep. 2017, doi: 10.1063/1.4998950. |
[28] | J. Morikawa et al., “Silk fibroin as a water-soluble bio-resist and its thermal properties,” RSC Adv, vol. 6, no. 14, pp. 11863–11869, 2016, doi: 10.1039/C5RA20201A. |
[29] | R. Fuente, A. Mendioroz, and A. Salazar, “Revising the exceptionally high thermal diffusivity of spider silk,” Mater Lett, vol. 114, pp. 1–3, Jan. 2014, doi: 10.1016/j.matlet.2013.09.092. |
[30] | A. B. Li, J. A. Kluge, M. Zhi, M. T. Cicerone, F. G. Omenetto, and D. L. Kaplan, “Enhanced Stabilization in Dried Silk Fibroin Matrices,” Biomacromolecules, vol. 18, no. 9, pp. 2900–2905, Sep. 2017, doi: 10.1021/acs.biomac.7b00857. |
[31] | H. Chen, X. Hu, and P. Cebe, “Thermal properties and phase transitions in blends of Nylon-6 with silk fibroin,” J Therm Anal Calorim, vol. 93, no. 1, pp. 201–206, Jul. 2008, doi: 10.1007/s10973-007-8885-y. |
[32] | B. Tulachan et al., “Electricity from the Silk Cocoon Membrane,” Sci Rep, vol. 4, no. 1, p. 5434, Jun. 2014, doi: 10.1038/srep05434. |
[33] | T. Shen, T. Wang, G. Cheng, L. Huang, L. Chen, and D. Wu, “Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure,” Int J Biol Macromol, vol. 113, pp. 458–463, Jul. 2018, doi: 10.1016/j.ijbiomac.2018.02.022. |
[34] | L. Yu, X. Hu, D. Kaplan, and P. Cebe, “Dielectric Relaxation Spectroscopy of Hydrated and Dehydrated Silk Fibroin Cast from Aqueous Solution,” Biomacromolecules, vol. 11, no. 10, pp. 2766–2775, Oct. 2010, doi: 10.1021/bm1008316. |
[35] | X. Hu, D. Kaplan, and P. Cebe, “Effect of water on the thermal properties of silk fibroin,” Thermochim Acta, vol. 461, no. 1–2, pp. 137–144, Sep. 2007, doi: 10.1016/j.tca.2006.12.011. |
[36] | D. Porter, F. Vollrath, K. Tian, X. Chen, and Z. Shao, “A kinetic model for thermal degradation in polymers with specific application to proteins,” Polymer (Guildf), vol. 50, no. 7, pp. 1814–1818, Mar. 2009, doi: 10.1016/j.polymer.2009.01.064. |
[37] | A. Sionkowska, M. Michalska, M. Walczak, K. Śmiechowski, and S. Grabska, “Preparation and characterization of silk fibroin/collagen sponge modified by chemical cross-linking,” Molecular Crystals and Liquid Crystals, vol. 640, no. 1, pp. 180–190, Nov. 2016, doi: 10.1080/15421406.2016.1261433. |
[38] | X. Guo, N. Lin, S. Lu, F. Zhang, and B. Zuo, “Preparation and Biocompatibility Characterization of Silk Fibroin 3D Scaffolds,” ACS Appl Bio Mater, vol. 4, no. 2, pp. 1369–1380, Feb. 2021, doi: 10.1021/acsabm.0c01239. |
[39] | E. Niknejad, R. Jafari, and N. Valipour Motlagh, “Mechanical Properties of Biodegradable Fibers and Fibrous Mats: A Comprehensive Review,” Molecules, vol. 30, no. 15, p. 3276, Aug. 2025, doi: 10.3390/molecules30153276. |
[40] | A. Lazaris et al., “Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells,” Science (1979), vol. 295, no. 5554, pp. 472–476, Jan. 2002, doi: 10.1126/science.1065780. |
[41] | N. Minoura, S. I. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, “Attachment and Growth of Fibroblast Cells on Silk Fibroin,” Biochem Biophys Res Commun, vol. 208, no. 2, pp. 511–516, Mar. 1995, doi: 10.1006/bbrc.1995.1368. |
[42] | Y. Wang et al., “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomaterials, vol. 29, no. 24–25, pp. 3415–3428, Aug. 2008, doi: 10.1016/j.biomaterials.2008.05.002. |
[43] | C. Wang et al., “Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation,” Acta Biomater, vol. 91, pp. 99–111, Jun. 2019, doi: 10.1016/j.actbio.2019.04.048. |
[44] | R. Deshpande, S. Shukla, A. Kale, N. Deshmukh, A. Nisal, and P. Venugopalan, “Silk Fibroin Microparticle Scaffold for Use in Bone Void Filling: Safety and Efficacy Studies,” ACS Biomater Sci Eng, vol. 8, no. 3, pp. 1226–1238, Mar. 2022, doi: 10.1021/acsbiomaterials.1c01103. |
[45] | A. Sharafat-Vaziri et al., “Safety and efficacy of engineered tissue composed of silk fibroin/collagen and autologous chondrocytes in two patients with cartilage defects: A pilot clinical trial study,” Knee, vol. 27, no. 5, pp. 1300–1309, Oct. 2020, doi: 10.1016/j.knee.2020.06.015. |
[46] | I. Klabukov et al., “Biomechanical Behaviors and Degradation Properties of Multilayered Polymer Scaffolds: The Phase Space Method for Bile Duct Design and Bioengineering,” Biomedicines, vol. 11, no. 3, p. 745, Mar. 2023, doi: 10.3390/biomedicines11030745. |
[47] | R. D. Abbott and D. L. Kaplan, “Strategies for improving the physiological relevance of human engineered tissues,” Trends Biotechnol, vol. 33, no. 7, pp. 401–407, Jul. 2015, doi: 10.1016/j.tibtech.2015.04.003. |
[48] | C. Vepari and D. L. Kaplan, “Silk as a Biomaterial.,” Prog Polym Sci, vol. 32, no. 8–9, pp. 991–1007, 2007, doi: 10.1016/j.progpolymsci.2007.05.013. |
[49] | B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, “Silk fibroin biomaterials for tissue regenerations,” Adv Drug Deliv Rev, vol. 65, no. 4, pp. 457–470, Apr. 2013, doi: 10.1016/j.addr.2012.09.043. |
[50] | H. Tao et al., “Silk‐Based Conformal, Adhesive, Edible Food Sensors,” Advanced Materials, vol. 24, no. 8, pp. 1067–1072, Feb. 2012, doi: 10.1002/adma.201103814. |
[51] | D.-L. Wen et al., “Recent progress in silk fibroin-based flexible electronics,” Microsyst Nanoeng, vol. 7, no. 1, p. 35, May 2021, doi: 10.1038/s41378-021-00261-2. |
[52] | S. Pilley, H. Kaur, G. Hippargi, P. Gonde, and S. Rayalu, “Silk fibroin: a promising bio-material for the treatment of heavy metal-contaminated water, adsorption isotherms, kinetics, and mechanism,” Environmental Science and Pollution Research, vol. 29, no. 37, pp. 56606–56619, Aug. 2022, doi: 10.1007/s11356-022-19833-4. |
[53] | S. Gupta and B. Kandasubramanian, “Silk based adsorbents for remediation of heavy metal ions from wastewater,” Mater Today Proc, Jul. 2023, doi: 10.1016/j.matpr.2023.07.049. |
[54] | D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat Protoc, vol. 6, no. 10, pp. 1612–1631, Oct. 2011, doi: 10.1038/nprot.2011.379. |
[55] | B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, “Silk fibroin biomaterials for tissue regenerations,” Adv Drug Deliv Rev, vol. 65, no. 4, pp. 457–470, Apr. 2013, doi: 10.1016/j.addr.2012.09.043. |
[56] | A. Arkhangelskiy, D. Maniglio, A. Bucciarelli, V. K. Yadavalli, and A. Quaranta, “Plasma‐Assisted Deposition of Silk Fibroin on Different Surfaces,” Adv Mater Interfaces, vol. 8, no. 13, Jul. 2021, doi: 10.1002/admi.202100324. |
[57] | T. P. Nguyen et al., “Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review,” Polymers (Basel), vol. 11, no. 12, p. 1933, Nov. 2019, doi: 10.3390/polym11121933. |
[58] | K. A. Janus et al., “Silk‐Fibroin as Biocompatible and Bioresorbable Enzyme Immobilization Matrix for Screen‐Printed Amperometric Glucose Biosensors,” Advanced Sensor Research, vol. 4, no. 8, Aug. 2025, doi: 10.1002/adsr.202500048. |
[59] | S. Indrakumar, T. K. Dash, V. Mishra, B. Tandon, and K. Chatterjee, “Silk Fibroin and Its Nanocomposites for Wound Care: A Comprehensive Review,” ACS Polymers Au, vol. 4, no. 3, pp. 168–188, Jun. 2024, doi: 10.1021/acspolymersau.3c00050. |
[60] | M. Su and B. Kim, “Silk Fibroin-Carbon Nanotube Composites based Fiber Substrated Wearable Triboelectric Nanogenerator,” ACS Appl Nano Mater, vol. 3, no. 10, pp. 9759–9770, Oct. 2020, doi: 10.1021/acsanm.0c01854. |