[1] | Roig A, Cayuela M L, Sánchez-Monedero M A., 2006, An overview on olive mill wastes and their valorisation methods. Waste Management, 26, 9: 960-969. |
[2] | Azbar N, Abdurrahman B, Ayse F, Aysen M, FusunS, Adem O., 2004. A review of waste management options in olive oil production. Crit Rev Env Sci Tec 34, 3: 209-247. |
[3] | Romero-García J M, Niño L, Martínez-Patiño C, Álvarez C, Castro E, Negro M., 2014, Biorefinery based on olive biomass. State of the art and future trends. J. Bioresour Techno 159: 421-432. |
[4] | Fernández-Bolaños J, Felizón B, Brenes M, Guillén R, Heredia A., 1998, Hydroxytyrosol and tyrosol as the main compounds found in the phenolic fraction of steam-exploded olive stones. J Am Oil Chem Soc 75, 11: 1643-1649. |
[5] | Fernandez-Bolanos J, Felizon B, Heredia A, Rodrıguez R, Guillen R, Jimenez A., 2001, Hydroxytyrosol and tyrosol as the main compounds found in the phenolic fraction of steam-exploded olive stones. Bioresour Technol 79, 1: 53-61. |
[6] | Tripoli E, Marco G, Garden T, Danila D M, Santo G, Maurizio La G., 2005, The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 18, 01: 98-112. |
[7] | Caputo A C, Federica S, Pacifico M P., 2003, Disposal of by-products in olive oil industry: waste-to-energy solutions. Appl Therm Eng 23, 2: 197-214. |
[8] | Masghouni M, Hassairi M., 2000, Energy applications of olive-oil industry by-products: I. The exhaust foot cake. Biomass Bioenerg 18, 3: 257-262. |
[9] | Dorado M P, Cruz F, Palomar J M, Lopez F., 2006, An approach to the economics of two vegetable oil-based biofuels in Spain. J Renew Energ 31, 8: 1231-1237. |
[10] | Ballesteros I, Jose M O, Felicia S, Ballesteros M., 2001, Ethanol production from lignocellulosic byproducts of olive oil extraction. Appl Biochem Biotechnol 91, 1-9: 237-252. |
[11] | Kula I, Mehmet U, Hamdi K, Ali C., 2008, Adsorption of Cd (II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour Technol 99, 3: 492-501. |
[12] | Martinez M L, Torres M M, Guzman C A, Maestri D M., 2006, Preparation and characteristics of activated carbon from olive stones and walnut shells. Ind Crops Prod 23, 1: 23-28. |
[13] | Montané D, Joan S, Carles T, Xavier F., 2002, High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenerg 22, 4: 295-304. |
[14] | La Mantia F P, Morreale M., 2007, Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesion promoters. Compos Interface 14, 7-9: 685-698. |
[15] | La Mantia F P, Morreale M., 2011, Green composites: A brief review. Compos Part A Appl Sci Manuf 42, 6: 579-588. |
[16] | Guinda Á., 2006, Use of solid residue from the olive industry. Grasas y Aceites 57, 1: 107-115. |
[17] | Papadakos J Pumice-stone mixed with olive oil soap flakes; antiseptics for removing the dead cells, and germs around the area; for painters, people working in garages and vehicle services, butchers, medicine doctors. U.S. Patent Application 2002, 10/259,262. |
[18] | González‐Hidalgo I, Sancho B, José M R., 2012, Evaluation of table olive by‐product as a source of natural antioxidants. Int J Food Sci Tech 47, 4: 674-681. |
[19] | Francisca R, Filipa B P, M Beatriz P P O., 2015, Olive by-products: Challenge application in cosmetic industry. Ind Crops Prod 70:116-124. |
[20] | Uğurlu M, Ahmet G, Metin A, 2008, Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation. Microporous Mesoporous Mater 111, 1: 228-235. |
[21] | Kütahyalı C, Meral E., 2010, Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396, 2: 251-256. |
[22] | Sansoucy, R., 1985, Olive by-products for animal feed. FAO 43. |
[23] | Molina-Alcaide E, Yáñez-Ruiz D R., 2008, Potential use of olive by-products in ruminant feeding: A review. Anim Feed Sci Technol 147, 1: 247-264. |
[24] | Rodríguez G, Antonio L, Rocío R, Ana J, Rafael G, Fernández-Bolanos J., 2008, Olive stone an attractive source of bioactive and valuable compounds. Bioresour Technol 99, 13: 5261-5269. |
[25] | Navas C S, María M R, Dolly L G., 2015, Comparative Study of Agro industrial Wastes for their use in Polymer Matrix Composites. Procedia Mater Sci 8: 778-785. |
[26] | Koutsomitopoulou A F, Bénézet J C, Bergeret A, Papanicolaou G C., 2014, Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technol 255: 10-16. |
[27] | Perinović S, Branka A, Matko E., 2010, Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Thermochim Acta 510: 97-102. |
[28] | Perinović S, Andričić B, Kovačić T, Vučenović V., 2008, Influence of citric plasticizers on thermal properties of poly (l-lactide)/olive stone flour composites. Inter Conf MATRIB 262-268. |
[29] | Perinović S, Branka A., 2013, Modification of properties of poly (L-lactide). Polimeri: časopis za plastiku i gumu 33.3-4: 100-105. |
[30] | Naghmouchi I, Peré M, Sami B., 2015, Olive stones flour as reinforcement in polypropylene composites: A step forward in the valorization of the solid waste from the olive oil industry. Ind Crops Prod 72: 183–191. |
[31] | Naghmouchi I, Francesc X E, Pere M, Sami B., 2015, Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Mater Des 65: 454-461. |
[32] | Siracusa G, La Rosa A D, Siracusa V, Trovato M., 2011, Eco-compatible use of olive husk as filler in thermoplastic composites. J Polym Environ 9, 4: 157-161. |
[33] | Amar B, Krim S, Djidjelli H, Ihamouchen C, Martinez J J., 2011, Study and characterization of composites materials based on polypropylene loaded with olive husk flour. J Appl Polym Sci 122, 2: 1382-1394. |
[34] | Kaya N, Atagur M, Akyu O, Seki Y, Sarikanat M, Sutcu M, Seydibeyoglu MO, Sever M., 2018, Fabrication and characterization of olive pomace filled PP composites, Composites Part B 150: 277-283. |
[35] | Naghmouchi I, Pere M, Sami B., 2014, Polyvinyl chloride composites filled with olive stone flour: mechanical, thermal, and water absorption properties. J Appl Polym Sci 131: 41083. |
[36] | Tserki V, Matzinos P, Panayiotou C., 2006, Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Compos Part A Appl Sci Manuf 37, 9: 1231-1238. |
[37] | Lammia, S.; Le Moignec, N.; Djenaneb, D.; Gontarda, N.; Angellier-Coussya, H., 2018, Dry fractionation of olive pomace for the development of food packaging biocomposites, Industrial Crops & Products, 120, 250–261. |
[38] | Lammia, S.; Le Moignec, N.; Djenane, D.; Gontarda; Angellier-Coussya, H., 2018, Dry fractionation of olive pomace as a sustainable process to producellers for biocomposites, POWDER TECHNOL.,326, 44-53. –53. |
[39] | Gharbi A, Ramzi B, Sami B., 2014, Composite materials from unsaturated polyester resin and olive nuts residue: The effect of silane treatment. Ind Crops Prod 62: 491-498. |
[40] | Papanicolaou G C, Koutsomitopoulou A F, Sfakianakis A., 2012, Effect of thermal fatigue on the mechanical properties of epoxy matrix composites reinforced with olive pits powder. J Appl Polym Sci 124, 1: 67-76. |
[41] | Papanicolaou G C, Xepapadaki A G, Angelakopoulos G C, Zabaniotou A, Ioannidou O., 2011, Use of solid residue from olive kernel pyrolysis for polymer matrix composite manufacturing: Physical and mechanical characterization. J Appl Polym Sci 119, 4: 2167-2173. |
[42] | Abou-Zeid R E, Hassan E A, Bettaieb F, Khiari R, Hassan M L., 2015, Use of Cellulose and Oxidized Cellulose Nanocrystals from Olive Stones in Chitosan Bionanocomposites. J Nanomater 16, 1: 1–11. |
[43] | Pereda M, Alain D, Mirta I A: Norma E M., 2014, Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr Polym 101: 1018-1026. |
[44] | Hammoui Y, Sonia M B, Antoine D, Nabila D, Nawel A, Hocine R, Farid D, Khodir M., 2015, Preparation of plasticized wheat gluten/olive pomace powder biocomposite: Effect of powder content and chemical modifications. Mater Des 87: 742-749. |
[45] | Boudria, A.; Hammoui, Y.; Adjeroud, N.; Djerrada, N.; Madani, K., 2018, Effect of filler load and high-energy ball milling process on properties of plasticized wheat gluten/olive pomace biocomposite, ADV POWDER TECHNOL, 29, 1230–1238. |
[46] | Banat R, Mohammad M F., 2015, Olive Oil Waste Filled High Density Polyethylene Bio-Composite: Mechanical, Morphological and Water Absorption Properties. International Journal of Composite Materials. Int J Comp Mater 5, 5: 133-141. |
[47] | Banat R, Mohammad M F., 2015, Thermo-Gravimetric Stability of High Density Polyethylene Composite Filled with Olive Shell Flour. Am J Polym Sci 5, 3: 65-74. |
[48] | Tserki V, Matzinos P, Kokkou S, Panayiotou C., 2005, Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos Part A Appl Sci Manuf 36, 7: 965-974. |
[49] | Ayrilmis N, Buyuksari U., 2010, Utilization of olive mill sludge in the manufacture of fiberboard. BioResources 5, 3: 1859-1867. |
[50] | Moubarik A: Francisco J B, Grimi N., 2015, Understanding the physicochemical properties of olive kernel to be used as a potential tool in the development of phenol-formaldehyde wood adhesive. Int J Adhes Adhes 61: 122-126. |