[1] | Davidenko N., Carrodeguas R.G., Peniche C., Solis Ya., Cameron Ruth E. Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomaterialia 2010. 6:рр.466–476. [doi: 10.1016/j.actbio.2009.07.029] |
[2] | Rozita A.R., Rohana A., Abu В.,Sam’an M.M. Synthesis and Characterization of Pure Nanoporous Hydroxyapatite. Journal of Physical Science, 2011 Vol. 22(1): pp.25–37. [doi:http://web.usm.my/jps/22-1-11/22.1.2.pdf] |
[3] | Luciano P., Magdalena K. Properties and structure of microcrystalline chitosan and Hydroxyapatite composites. Journal of Biomaterials and Nanobiotechnology, 2014. 5: pp. 128-138. [doi:https://file.scirp.org/pdf/JBNB_2014042515442779.pdf] |
[4] | Pogorielov M.V., GusakYe.V., Babich I.M., Kalinkevich O.V., Kalinkevich A.N., Somokhvalov I.I., Danilchenko S.N., Skliar A.M. Trace elements sorption by the chitosan-based materials. J. Clin. Exp. Med. Res., 2014. 2(1): pp.88–99. |
[5] | Jayachandran V., Se-Kwon Kim. Chitosan Composites for Bone Tissue Engineering–An Overview// Mar. Drugs 2010.8: pp.2252-2266. [doi:10.3390/md8082252] |
[6] | Danilchenko S.N., Kalinkevich O.V., Pogorelov M.V., Sklyar A.M., Kalinichenko T.G., Kalinkevich A.N., Starikov V.V., and etc. Experimental substantiation of the use of composite materials based on chitosan and calcium phosphates for the replacement of bone defects. Orthopedics, traumatology and prosthetics. 2009. Vol.1. pp. 66–72. (in Russian) |
[7] | Di Martino A., Sittinger M., Risbud M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005. 26:pp.5983–5990. [doi: 10.1016/j.biomaterials.2005.03.016] |
[8] | Hu Q., Li B., Wang M., Shen J. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in sit hybridization: a potential material as internal fixation of bone fracture. Biomaterials 2004. 25:pp.779–785. [doi:https://www.ncbi.nlm.nih.gov/pubmed/14609666] |
[9] | Teng S., Lee E., Yoon B., Shin D., Kim H., Oh J. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J. Biomed. Mater. Res. Part A 2009. 88: pp.569–580. [doi:10.12691/ajmse-5-1-2] |
[10] | Yamaguchi I., Tokuchi K., Fukuzaki H., Koyama Y., Takakuda K., Monma H., et al. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J of Biomedical Materials Research, 2001. 55:pp.20–27. [doi:10.1186/1423-0127-16-65] |
[11] | Kim S.K., Mendis E. Bioactive compounds from marine processing byproducts-A review. Food Res. Int. 2006. 39: pp. 383–393. [doi:https://doi.org/10.1016/j.foodres.2005.10.010] |
[12] | Rusu V. M., Ng C. H., Wilke M., Tiersch B., Fratzl P., Peter, M. G. Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 2005. 26: pp. 5414–5426. [doi: 10.1016/j.biomaterials.2005.01.051] |
[13] | Pena J., Izquierdo-Barba I., Martinez A., Vallet-Regi M. New method to obtain chitosan/apatite materials at room temperature. Solid State Sci. 2006. 8(5): pp.513-519. |
[14] | Monica V.Z., Richard A.S., Benjamin T.R., Jessica A.J., Jared O.C., Warren O.H., Joel D.B. Physical properties and in vitro evaluation of collagen–chitosan–calcium phosphate microparticle-based scaffolds for bone tissue regeneration. Journal of Biomaterials Applications 2012. 28(4):pp.566–579. [doi:https://doi.org/10.1177/0885328212465662] |
[15] | Wilson R.M, Elliott J.C., Dowker SEP, Rodriguez-Lorenzo L.M. Rietveld Refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials 2005; 26: pp.1317–27. [doi:10.1016/j.biomaterials.2004.04.038] |
[16] | Bachurin A.V. Analysis of osseointegration of titanium implants with additional stimulation of their surface osteoinductive effect. Bulletin of Volgograd State University. Series 9. Issue. 11. 2013. pp. 58-61. (in Russian) |
[17] | Starikov V.V., Rudchenko S.O. Optimization of the properties of a composite based on hydroxyapatite and chitosan by varying its composition and heat treatment regimes. Bulletin of Kazan National University, No. 915, Series "Physics", Issue. 2010.14:pp.35-39. (in Russian) |
[18] | Haiguang Z., Lie M., Changyou G. Jiacong Sh., Fabrication and properties of mineralized collagen-chitosan/hydroxyapatite scaffolds// Polym. Adv. Technol. 2008; 19: pp.1590–1596.[doi:10.1002/pat.1174] |
[19] | Xianmiao C., Yubao L., Yi Z., Li Z., Jidong L., Huanan W. Properties and in vitrobiological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater. Sci. Eng. C 2009. 29:pp.29–35. [doi: 10.3390/md8082252] |
[20] | Kikuchi M., Ikoma T., Itoh S., Matsumoto H., Koyama, Y., Takakuda K., Shinomiya K., Tanaka J. Biomimetic synthesis of bone like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Compos. Sci. Technol. 2004. 64:pp.819–825. [doi: 14580909] |
[21] | Ergashev К.H., Vokhidova N.R., Rashidova S.Sh."On the preparation of the compositions of chitosan Bombyx mori with calcium phosphate", Rep. conf. Urgench, 20-21 April 2017. 2b:pp.22-23. (in Russian) |
[22] | Pavlov G.M., Selyunin S.G. Polym. Sci.1925. 8(8). pp.1986. |
[23] | Klimova V.A. Main Micromethods of Organic Compound Analysis. Chemiya, Moscov. 1980. (in Russian) |
[24] | Pogorielov M.V., GusakYe.V., Babich I.M., Kalinkevich O.V., Kalinkevich A.N., Somokhvalov I.I., Danilchenko S.N., Skliar A.M. Trake elements sorption by the chitosan-based materials. J. Clin. Exp. Med. Res. 2014. 2(1):pp88-99. |
[25] | Tager A.A. Physicochemistry of polymers. (4th edition.). / Edited by Askadsky A.A. М: Nauchniy mir. 2007. pp. 576. (in Russian). |
[26] | Vokhidova N.R. Synthesis, properties and application of polymer metal complexes of chitosan Bombyx mori and the chitosan stabilized nanoparticles of d-metals. Abstract of the doctoral dissertation. Tashkent. 2016. P.190. |
[27] | www.pharmencyclopedia.com.ua/article/7074/kalciyu-xlorid |