[1] | Wilson, D., Stenzenberger, H.D. and Hergenrother, P.M., Polyimides, Chapman and Hall, New York, 1998. |
[2] | Wang, L., Hu, A., Fan, L., Yang, S. 2013, Structures and properties of closed‐cell polyimide rigid foams, J. Appl. Polym. Sci. 130, 3282- 3291. |
[3] | Sun, G. Liu, L., Wang, J., Wang, H., Xie, Z., Han, S. 2014, Enhanced polyimide proportion effects on fire behavior of isocyanate-based polyimide foams by refilled aromatic dianhydride method, Polym. Degrad. Stab. 110, 1 – 12. |
[4] | Yan L., Fu L., Chen Y., Tian H., Xiang A., and Rajulu A. V. (2017) Improved thermal stability and flame resistance of flexible polyimide foams by vermiculite reinforcement, Journal of applied polymer science, 1 – 7. |
[5] | Zhang D., Dong J., Gan F., Li Z., and Zhang Q., 2018, Structural evolution from poly(amic acid) to polyimide fibers during thermal imidization process, High Performance Polymer, XX(X), 1 – 11. |
[6] | Ghosh, K.L. and Mital, K.L., Polyimides, Fundamentals and Applications (New York; Dekker), 1996. |
[7] | Bruma M., Damaceanu M. and Rusu R., 2012, Study of thin films made from aromatic polymers containing six-member imide rings, High Performance Polymers, 24, 31. |
[8] | Liu X., Zhan M., and Wang K., 2012, Thermal properties of the polyimide foam prepared from aromatic dianhydride and isocyanate, High Performance Polymers 24, 373. |
[9] | Yu F., Wang K., Liu X. and Zhan M., 2013, Preparation and Characterization of Rigid Polyimide foams derived from dianhydride and isocyanate, J. Appl. Polym. Sci. 127, 5075 – 5081. |
[10] | Yao, Y., Guangcheng, Z., Jianwei, L., Aifeng, W. and Xuetao, S., 2017, Effects of 4,4’-diaminodiphenyl ether on the Structure and Properties of isocyanate-based Polyimide Foams. J. Applied Polymer Sci, 135, 12. |
[11] | Tian H., Yao Y., and Ma S. 2017, Improved mechanical, thermal and flame resistant properties of flexible isocyanate-based polyimide foams by graphite incorporation, High Performance Polymers. |
[12] | Weiser, E. S., Johnson, T. F., St Clair, T. L., Echigo, Y., Kaneshiro H. and Grimsley B. W., 2000, Polyimide Foams for Aerospace Vehicles, High Perform. Polym. 12, 1 – 12. |
[13] | Seibert, H.E., 2006, Applications for PMI foams in Aerospace Sandwich Structures, Reinforced Plastics 50(1), 44 – 48. |
[14] | Geyer W., Seibert H. US Patent 5,698,605, 1999. |
[15] | Kaneko, Y., Yamaguchi, H., and Kohda, M. “Polyimide foam and method for producing same”, US Patent, 0, 218, 265, 2011. |
[16] | Vazquez, J. M., Cano, R. J., Jensen, B. J., and Weiser, E. S. “Polyimide foams”, US Patent, 6, 956, 066, 2005. |
[17] | Takekoshi, T., Wirth, J.G., Health, D.R. Ekochanowski, J., Manello, J.S. and Webber, M.J., 1980, Polymer synthesis via Aromatic Nitro Displacement Reaction, J. Polym. Sci, Polym. Chem. Ed., 18, 3069 – 3080. |
[18] | White, D.M., Takekoshi, T., Williams, F.J., Relles, H.M., Donahue, P.E., Klopfer, H.J., Loucks, G.R., Manello, J.S., Mathews, R.O. and Schluenz, R.W., 1981, Polyetherimides via Nitro-Displacement Polymerization: Monomer Synthesis and 13C-NMR Analysis of Monomers and Polymers, J. Polym. Sci. Polym. Chem. Ed., 19, 1635 – 1658. |
[19] | Takekoshi, T., Kochenowski, J.E., Manello, J.S. and Webber, M.J., 1985, Polyetherimides. I. Preparation of Dianhydrides Containing Aromatic Ether Groups, J. Polym. Chem. Ed., 23, 1759 – 1769. |
[20] | Melissaris, A.P. and Mikroyannidis, J.A., 1989, Thermally Stable Polymers Based on Bismaleimide Containing Amide, Imide, and Ester Linkages, J. Polym. Sci. Part A: Polym Chem. 27(1), 245 – 262. |
[21] | Venkatesan, D. and Srinivasan, M., 1993, Synthesis and Characterization of Polyetherimides Containing Ether Linkages, J. M. S – Pure Appl. Chem. A30 (11), 801–814. |
[22] | Park Y and Lee D. 2004, Surface and electrical characteristics of poly (amide imide)-poly (dimethylsiloxane) nanocomposites, J. Appl. Polym. Sci., 93, 342 – 347. |
[23] | Yeganeh, H., Atai, M., Hojati Talemi, P. and Jamshidi, S., 2006, Synthesis, Characterization and Properties of Novel Poly (urethane-imide) Networks as Electrical Insulators with Improved Thermal Stability, Macromol. Mat. Eng., 291, 883–894. |
[24] | Law Y. Y., Balashova I. M., and Danner R. P., 2009, Effect of high pressure carbon dioxide on the solubility and diffusivity of dichloromethane in polyetherimide, J. Appl. Polym. Sci., 114, 2497 – 2501. |
[25] | Thiruvasagam P. and Venkatesan D., 2011, Synthesis and characterization of polyetherimides via aromatic nitro displacement reaction, High Performance Polymers 23(), 22. |
[26] | Zhang Z. and Ashida K. 1997, Amide-Modified Polyisocyanurate Foams Having High Thermal Stability, Journal of Cellular Plastics 33(5), 487-501. |
[27] | Zuo, M., Xiang, Q. and Takeichi, T., 1998, Preparation and Properties of Novel Poly(urethane-imide)s, Polymer, 39, 6883–6889. |
[28] | Zuo, M. and Takeichi, T., 1997, Novel Method for the Preparation of Poly(urethane-imide)s and their Properties, J. Polym. Sci. Part A: Polym. Chem., 35, 3745–3753. |
[29] | Zuo, M. and Takeichi, T., 1999, Preparation and Characterization of Poly(urethane–imide) Films Prepared from Reactive Polyimide and Polyurethane Prepolymer, Polymer, 40, 153–5160. |
[30] | Iyer, N. P., Gnanarajan, T. P. and Radhakrishnan, G., 2002, Mechanical and Thermal Properties of Networks Prepared from Reactive Poly(urethane-imide)s and Blocked Polyurethane Prepolymer, Macromol. Chem. Phys., 203, 712–717. |
[31] | Radhakrishnan Nair, P., Rechunadhan Nair, C. P. and Francis, D. J., 1999, Effect of Imide- oxazolidinone Modification on the Thermal and Mechanical Properties of HTPB-Polyurethanes, J. Appl. Polym. Sci., 71, 1731–1738. |
[32] | Yeganeh, H., Hojati Talemi, P. and Jamshidi, S., 2007, Novel Method for Preparation of Polyurethane Elastomers with Improved Thermal Stability and Electrical Insulating Properties, J. Appl. Polym. Sci., 103, 1776–1785. |