[1] | D. P. Pfister, Y. Xia, and R. C. Larock, Recent Advances in Vegetable Oil-Based Polyurethanes. ChemSusChem, 201, 4, 703 – 717. |
[2] | X. Konga, G. Liu, H. Qi, J. M. Curtis, Preparation and characterization of high-solid polyurethane coating systems based on vegetable oil derived polyols. Progress in Organic Coatings, 2013, 76, 1151– 1160. |
[3] | T. F. Garrison, M. R. Kessler, R. C. Larock, Effet of Unsaturation and Different Ring-Opening Methods on the Properties of Vegetable Oil-Based Polyurethane Coating, Polymer, 55(4), 1004-1011. |
[4] | V. V. Gite, P. P. Mahulikar, D. G. Hundiwale, U. R. Kapadi. Polyurethane coating using trimer of isophoron diisocyanate, Journal of Scientific & Industrial Research, 2004, 348-354. |
[5] | E. Hablot, D. Zheng, M. Bouquey, L. Avérous, Polyurethanes Based on Castor Oil: Kinetics, Chemical, Mechanical and Thermal Properties, Macromol. Mater. Eng., 2008, 293, 922–929. |
[6] | X. Kong, G. Liu, J. M.Curtis, Novel polyurethane produced from canola oil based poly (ether ester) polyols: Synthesis, characterization and properties. European Polymer Journal, 2012, 2097-2106. |
[7] | A. Haryono, E. Triwulandari1, D. Sondari1, A. Randy, A. Ridwanuloh, Control of Biodegradability of Polyurethane Foam Based on Palm Oil by Ratio of Soft Segment on the Polymer Backbone. Annales Bogorienses, 2010, 14, 1. |
[8] | Anupama Kaushik, Dheeraj Ahuja, Vipin Salwani. Synthesis and characterization of organically modified clay/castor oil based chain extended polyurethane nanocomposites, Composites Part A: Applied Science and Manufacturing, 2011, 1534-1541. |
[9] | L. H. Bao, Y. J. Lan, S. Z. Zhang, Effect of NCO/OH Molar Ratio on the Structure and Properties of Aqueous Polyurethane from Modified Castor Oil, Iranian Polymer Journal, 2006, 15 (9), 737-746. |
[10] | M. A. Corcuera, L. Rueda, B. Fernandez d’Arlas, A. Arbelaiz, C. Marieta, I. Mondragon, A. Eceiza, Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Satbility, 2010, 2175-2184. |
[11] | V. Garcia-Pacios, J. A. Jofre-Reche, V. Costa, M. Colera, J. M. Martin-Martinez. Coating prepared from waterborn polyurethane dispersion obtained with polycarbonates of 1,6-hexanediol of different molecular weights. Progress in Organic Coatings, 2013, 1484-1493. |
[12] | I. Vroman, and L. Tighzert, Biodegradable Polymers. Materials, 2009, 2, 307-344. |
[13] | S. Ibrahim, A. Ahmad, N. S. Mohamed, Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes, Polymers, 2015, 7, 747-759. |
[14] | V. J. Dave, H. S. Patel, Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. Journal of Saudi Chemical Society, 2013, JSCS 569. |
[15] | D. Radojcić, M. Ionescu, Z. S. Petrović, Novel potentially biodegradable polyurethanes from bio-based polyols. Contemporary Materials, IV-1, 2013, 9-21, UDK 66:678. |
[16] | M. B. Dalen, A. Q. Ibrahim, H. M. Adamu, Effects of Low Castor Oil on Mechanical Properties of Polyurethane Foams. British Journal of Applied Science & Technology, 2014, 4(18): 2661-2683. |
[17] | I. S. Ristic, Z. D. Bjelovic, B. Hollo, K. M. Szécsényi, J. Budinski-Simendic, N. Lazic, M. Kicanovic, Thermal stability of polyurethane materials based on castor oil as polyol component, Journal of thermal analysis and calorimetry, 2013, 111.2: 1083-1091. |
[18] | L. Hojabri, X. Kong, Suresh S. Narine. Fatty Acid-Derived Diisocyanate and Biobased Polyurethane Produced from Vegetable Oil: Synthesis, Polymerization, and Characterization. Biomacromolecules, 2009, 10, 884–891. |
[19] | T. S. Velayutham, W. H. Abd Majid, A. B. Ahmad, G. Yik Kang, S.N. Gan, Synthesis and characterization of polyurethane coating derived from polyols synthesized with glycerol, phthalic anhydride and oleic acid. Progress in Organic Coatings, 2009, 367-371. |
[20] | Y. Ganji, M. Kasra, S. S. Kordestani, Mechanical and Degradation Properties of Castor Oil-Based Polyurethane, International Journal of Engineering and Advanced Technology, 2015, 4, 4. |
[21] | A. Nicolau, R. M. Mariath, D. Samios, Study of the properties of polymers obtained from vegetable oil derivatives by light scattering techniques, Materials Science and Engineering, 2009, 29, 452–457. |
[22] | H. Yeganeh, P. H. Talemi, Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol), Polymer Degradation and Stability, 2007, 92, 480-489. |
[23] | S. Miao, P. Wang, Z. Su, S. Zhang, Vegetable-oil-based polymers as future polymeric biomaterials, Acta Biomaterialia, 2014, 10(4): 1692-1704. |
[24] | M. Kumar, and R. Kaur, Effect of Different Formulations of MDI on Rigid Polyurethane Foams based on Castor Oil. IJSRR, 2013, 2(1): 29- 42. |
[25] | I. Ganetri, L. Tighzert, P. Dony, A. Challioui, New composites based on castor oil with isophorone diisocyanate polyurethanes and cellulose fibers. J. Mater. Environ. Sci., 2013, 4 (4): 571-582. |
[26] | A. Sirkecioglu, H. B. Mutlu, C. Citak, A. Koc, F. Seniha Guner, Physical and Surface Properties of Polyurethane Hydrogels in Relation With Their Chemical Structure. Polymer engineering and science, 2013, 54(5): 1182-1191. |
[27] | P.S. Sathiskumar, and G. Madras, Synthesis, characterization, degradation of biodegradable castor oil based polyesters. Polymer Degradation and Stability, 2011, 96, 1695-1704. |
[28] | Z. Gao, J. Peng, T. Zhong, J. Sun, X. Wang, C. Yue, Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 2012, 87(3): 2068-2075. |
[29] | B. B. Silva, R. M. Santana, M. M. Forte. A solventless castor oil-based PU adhesive for wood and foam substrates. International Journal of Adhesion & Adhesives, 2010, 30, 559–565. |
[30] | J. M. E. Rodrigues, M. R. Pereira, A. G. de Souza, M. L. Carvalho, A. A. Dantas Neto, T. N. C. Dantas, J. L. C. Fonseca, DSC monitoring of the cure kinetics of a castor oil-based polyurethane, Thermochimica Acta, 2005, 427, 31–36. |
[31] | D. J. dos Santos, L. B. Tavares, G. F. Batalha, Mechanical and physical properties investigation of polyurethane material obtained from renewable natural source. Journal of Achievements in Materials and Manufacturing Engineering, 2012, 54, 2. |
[32] | E. S. Mallmann, M. I. Rocha Barbosa, R. M. Filho, Assessment of Biobased Polyurethane Reaction Kinetics through DSC and FTIR Analysis. International Journal of Scientific Research in Chemical Engineering, 2014, 1(4): 66-73. |
[33] | E. Marengo, M. Bobba, E. Robotti, M. Lenti, Hydroxyl and acid number prediction in polyester resins by near infrared spectroscopy and artificial neural networks, Analytica Chimica Acta, 2004, 511, 313–322. |
[34] | A. Ramirez, M. F. Valero, J. E. Pulido, Z. Cheng, Polyurethanes based on polyols from castor oil, starch granules and starch-derived glycol and glycerol glycosides: morphology, synthesis, chemical, mechanical, and thermal properties, InThe 2008 Annual Meeting. |
[35] | M. A. R. Meier, J. O. Metzger, U. S. Schubert, Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev, 2007, 36, 1788–1802. |
[36] | D. Guzman, X. Ramis, X. Fernandez-Francos, A. Serra, Enhancement in the Glass Transition Temperature in Latent Thiol-Epoxy Click Cured Thermosets, Polymers, 2015, 7, 680-694. |