[1] | Monge, Gaspard.: Mémoiresur la théorie des déblais et des remblais. Histoire de l'Académie Royale des Sciences de Paris 666-704 (1781). |
[2] | Kantorovich, Leonid V.: On the translocation of masses. Dokl.Akad.Nauk. USSR (NS). 37, 7-8 (1942). |
[3] | Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. Journal of Mathematics & Physics. 20, 224-230 (1941). |
[4] | Koopmans, T. C.: Optimum utilization of the transportation system. Econometrica. Journal of the Econometric Society. 136-146 (1949). |
[5] | Dantzig G.B.: Linear Programming and Extensions. Princeton University Press, Princeton, NJ, (1963). |
[6] | Charnes A., Cooper W.W, Henderson A.: An Introduction to Linear Programming. John Wiley & Sons, New York. (1953). |
[7] | Charnes A., Cooper W.W.: The Steeping Stone Method of Explaining Linear Programming Calculations in Transportation Problems. Management Science. 1(1) 49–69 (1954). |
[8] | Charnes, A. and Klingman, D.: The more-for-less paradox in the distribution models. Cahiers du Centre d’Etudes Recherche Operationnelle. 13 11-22 (1977). |
[9] | Babu, M. A., Hoque, M. A., & Uddin, M. S. A heuristic for obtaining better initial feasible solution to the transportation problem. OPSEARCH, 1-25 (2019). |
[10] | Baidya, A.: Stochastic supply chain, transportation models: implementations and benefits. OPSEARCH, 56(2), 432-476 (2019). |
[11] | Dash, S., Mohanty, S. P. Uncertain transportation model with rough unit cost, demand and supply. Opsearch, 55(1), 1-13 (2018). |
[12] | Gupta, K., Arora, R. More for less method to minimize the unit transportation cost of a capacitated transportation problem with bounds on rim conditions. Opsearch. 54(3), 460-474 (2017). |
[13] | Ahmad, F., Adhami, A. Y.: Total cost measures with probabilistic cost function under varying supply and demand in transportation problem. OPSEARCH. 56(2), 583-602 (2019). |
[14] | Khurana, A., Adlakha, V.: On multi-index fixed charge bi-criterion transportation problem. Opsearch, 52(4), 733-745 (2015). |
[15] | Brigden, M. E. B.: A variant of the transportation problem in which the constraints are of mixed type. Journal of the Operational Research Society 25(3), 437-445 (1974). |
[16] | Klingman, D., Russell R.: The transportation problem with mixed constraints. Journal of the Operational Research Society 25(3) 447-455 (1974). |
[17] | Klingman, D., Russell R.: Solving Constrained Transportation Problems. Institute for Operations Research and the Management Sciences (INFORMS) 23(1) 91-106 (1975a). |
[18] | Klingman, D., Russell R.: Solving constrained transportation problems.Operations Research 23(1), 91-106 (1975b). |
[19] | Heinz, I.: Solving the transportation problem with mixed constraints. Zeitschrift für Operations Research 26(1) (1982): 251-257. |
[20] | Adlakha, V., Kowalski, K., Lev, B.: Solving transportation problems with mixed constraints. International Journal of Management Science and Engineering Management, 1(1), 47–52 (2006). |
[21] | Pandian, P., Natarajan, G.: A new method for finding an optimal more-for-less solution of transportation problems with mixed constraints. Int. J. Contemp. Math. Sciences, 5(19), 931-942 (2010). |
[22] | Pandian, P., Natarajan, G.: Fourier method for solving transportation problems with mixed constraints. Int. J. Contemp. Math. Sciences 5(28) 1385-1395 (2010b). |
[23] | Pandian, P., and Natarajan, G.: An optimal more-for-less solution to fuzzy transportation problems with mixed constraints. Applied Mathematical Sciences 4(29) 1405-1415 (2010c). |
[24] | Mondal, R. N., Rashid, F., Shaha, P. R., Roy.: An Innovative Method for Unraveling Transportation Problems with Mixed Constraints. American Journal of Mathematics and Statistics 5(4) 190-195 (2015). |
[25] | Arora, S., Khurana, A.: A paradox in an indefinite quadratic transportation problem with mixed constraints, International Journal of Management and Systems, 18(3), 301-318 (2002). |
[26] | Khurana, A., Arora, S. R.: Solving transshipment problems with mixed constraints. International Journal of Management Science and Engineering Management, 6(4), 292-297 (2011). |
[27] | Adlakha, V., Kowalski, K.: A heuristic method for more-for-less in distribution related problems. International Journal of Mathematical Education in Science and Technology, 32, 61-71 (2001). |
[28] | Adlakha, V., Kowalski, K., Lev, B., Vemuganti, R.R.: More-for-less algorithm for fixed-charge transportation problems. The International Journal of Management Science, 35(1), 1–20 (2007a). |
[29] | Adlakha, V., Kowalski, K., Lev, B., Vemuganti, R.R.: More-for-less algorithm for fixed charge transportation problems. Omega. 35, 116-127 (2007b). |
[30] | Adlakha, V., Kowalski, K., & Vemuganti, R. R.: Heuristic algorithms for the fixed-charge transportation problem. Opsearch. 43(2) 132-151 (2006). |
[31] | Adlakha, V., Kowalski, K. (1998). “A quick sufficient solution to the more–for-less paradox in transportation problems”, Omega, 26, 541-547. |
[32] | Adlakha, V., Kowalski, K.: A note on the procedure MFL for a more–for-less solution in transportation problems. Omega. 28, 481-483(2000). |
[33] | Pandian, P., Anuradha, D.: Path Method for Finding a More-For-Less Optimal Solution to Transportation Problems. In International Conference on Mathematical Computer Engineering. 1, 331-337 (2013). |
[34] | Gani, A. N., Assarudeen, S. M.: A new operation on triangular fuzzy number for solving fuzzy linear programming problem. Applied Mathematical Sciences. 6(11), 525-532 (2012). |
[35] | Akilbasha, A., Natarajan, G., & Pandian, P.: Solving Transportation Problems with Mixed Constraints In Rough Environment. International Journal of Pure and Applied Mathematics 113(9), 130 -138 (2017). |
[36] | M.Rayan,: More- for- less paradox in distribution model, Extremal methods and systems analysis. Springer, New York, (1978). |
[37] | Gupta, S., Ali, I., & Ahmed, A.: Multi-objective capacitated transportation problem with mixed constraint: a case study of certain and uncertain environment. Opsearch. 55(2), 447-477 (2018). |
[38] | Agarwal, S., & Sharma, S.: A Minimax Method for Time Minimizing Transportation Problem with Mixed Constraints. International Journal of Computer & Mathematical Sciences. 7(3), 1-6 (2018). |
[39] | Rajarajeswari, P., & Maheswari, D.: Solving Integer Interval Transportation Problem with Mixed Constraints. IOSR Journal of Mathematics. 16 (3), 35-39 (2020). |
[40] | Gupta, K., & Arora, R.: Three dimensional bounded transportation problem. Yugoslav Journal of Operations Research 31(1), 121–137 (2021). |
[41] | Kumari, N.: Zero Accomplishment Method for Finding an Optimal More-For-Less Solution of Transportation Problem with Mixed Constraints. International Journal of Mathematics Trends and Technology (IJMTT). 66(8) 143-149 (2020). |
[42] | Khoso, A. M., Shaikh, A. A., & Qureshi, A. S.: Modified LCM’S Approximation Algorithm for Solving Transportation Problems. Journal of Information Engineering and Applications. 10(3), 7-15(2020). |
[43] | Gupta, G., Rani, D., & Singh, S.: An Alternate for the Initial Basic Feasible Solution of Category 1 Uncertain Transportation Problems. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 90(1), 157-167(2020). |
[44] | Gupta, S., Ali, I., & Chaudhary, S. (2020). Multi-objective capacitated transportation: a problem of parameters estimation, goodness of fit and optimization. Granular Computing, 5(1), 119-134 (2020). |