American Journal of Organic Chemistry
p-ISSN: 2163-1271 e-ISSN: 2163-1301
2020; 10(1): 1-16
doi:10.5923/j.ajoc.20201001.01
Akoun Abou1, Abdoulaye Djandé2, Amadou Tidjani Ilagouma3, Olivier Ouari4, Adama Saba2
1Department of Training and Research in Electrical and Electronic Engineering, Research Team: Instrumentation, Image and Spectroscopy, Félix Houphouët-Boigny National Polytechnic Institute, Yamoussoukro, Côte d’Ivoire
2Department of Chemistry, Laboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
3Department of Chemistry, Faculty of Sciences and Technology, Laboratory of Natural Substances and Organic Synthesis, University Abdou MOUMOUNI, Niamey, Niger
4Department of Chemistry, Radical Chemistry Institute, Research Team SREP, Aix-Marseille University, Marseille, France
Correspondence to: Akoun Abou, Department of Training and Research in Electrical and Electronic Engineering, Research Team: Instrumentation, Image and Spectroscopy, Félix Houphouët-Boigny National Polytechnic Institute, Yamoussoukro, Côte d’Ivoire.
Email: |
Copyright © 2020 The Author(s). Published by Scientific & Academic Publishing.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
The paper presents a combined experimental and computational study of 7-substituted coumarin derivative, the 2-oxo-2H-chromen-7-yl benzoate (I). The compound was prepared in the laboratory by linking the coumarin system (7-hydroxycoumarin) to benzoyl chloride and crystallized in the monoclinic space group P21 with 𝑎 = 3.86010(10), 𝑏 = 27.7876(9), 𝑐 = 5.7453(2) Å, 𝛼 = 𝛾 = 90, 𝛽 =91.063(3)° and 𝑍 = 2. The compound has been characterized structurally by spectroscopy and by single-crystal X-Ray diffraction. In the latter, the structure of (I) was solved by direct methods and refined to a final R value of 0.038 for 2260 independent reflections. Its structure is stabilized by intramolecular C-H···O and intermolecular C-H···O hydrogen bonds that extended as infinite 1D chain along [001]. Stabilization is also ensured by oxygen-π stacking interaction between the aromatic ring and oxygen of the benzoate moiety. The analysis of intermolecular interactions through the mapping of dnorm and shape-index revel that the most significant contributions to the Hirshfeld surface 36.2 and 27.9% are from H···H and O···H contacts, respectively. Besides, the molecular geometry of (I) was also optimized using density functional theory (DFT/RB3LYP), the basic ab initio model i.e the restricted Hartree-Fock (RHF) methods with the 6-311++G(d, p) basis set in ground state and frequency calculations with RB3LYP method using 6-31G(d,p) basis set. The theoretical data resulting from these quantum chemical calculations are generally in good agreement with the observed structure. The only significant observed difference is in the torsion angles between the coumarin ring system and the benzoate ring, where the observed C—O—C—C value (59.6 (4)°) is slightly lower than the DFT/RB3LYP calculated value (54.32°) and the frequency calculations (41.23°) value and larger than that of the RHF computed value (110.63°). The non-linear optical effects (NLO), molecular electrostatic potential (MEP), frontier molecular orbitals (FMO), and the Mulliken charge distribution were also investigated theoretically. The theoretical HOMO–LUMO energy gap values originating from these calculations are 4.465 eV (DFT/RB3LYP/6–311++G(d,p)) and 4.434 eV (FREQ/ RB3LYP/6–31G(d,p)).
Keywords: 7-substituted coumarin derivative, Spectroscopic analysis, Crystal structure, Conformational analysis, Hirshfeld surface analysis, Quantum chemical calculations
Cite this paper: Akoun Abou, Abdoulaye Djandé, Amadou Tidjani Ilagouma, Olivier Ouari, Adama Saba, Synthesis, Spectrometric Characterization (ESI-MS, NMR, IRTF), X-Ray Study and Quantum Chemical Calculations of 2-oxo-2H-chromen-7-yl Benzoate, American Journal of Organic Chemistry, Vol. 10 No. 1, 2020, pp. 1-16. doi: 10.5923/j.ajoc.20201001.01.
Scheme 1. Numbering of carbon atoms used in spectra analysis |
|
Figure 1. ESI-MS spectrum of compound (I). The black dot denotes an ion that is not specific to the sample |
Figure 2. 13C-NMR Spectrum of compound (I) |
Figure 3. 1H-NMR Spectrum of compound (I) |
Figue 4. 13C-NMR Spectrum for compound (I) |
Figue 5. DEPT-135 Spectrum of compound (I) |
Figure 6. An ORTEP [14] view of the title compound with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate hydrogen bonds |
|
Figure 7. Part of the crystal packing of the title compound showing the infinite 1D chain along [001]. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity |
Figure 8. A view of the crystal packing C=O…π and π–π stacking interactions (dashed lines). The yellow dots are ring centroids |
Figure 9a. Shape-index map plotted over -1.00 to 1.00 a.u |
Figure 9b. Hirshfeld surfaces mapped over dnorm (-0.149 to 1.279 a.u.) |
Figure 10. Decomposed two-dimensional fingerprint plots for the title compound. Various close contacts and their relative contributions are indicated |
|
Table 5. Experimental and calculated bond lengths (Å) |
|
|
Figure 11. Correlation graphic between the experimental and theoretical vibration frequencies of compound (I) (cm–1) |
|
(1) |
Figure 12. Calculated vibrational spectra of compound (I) |
Figure 13. Molecular electrostatic potential map (MEP) (in a.u.) calculated at DFT/RB3LYP/6-311++G(d,p), RHF/6-311++G(d,p) and FREQ/RB3LYP/6-31G(d,p) level frontier molecular orbitals analysis |
(2) |
(3) |
(4) |
(5) |
(6) |
|
Figure 14. The distributions and energy levels of the HOMO and LUMO orbitals computed for compound (I) |
|
(7) |
(8) |
(9) |
(10) |
|
|
|
[1] | Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K.-H.; (2003) Med. Res. Rev. 23, 322–345. |
[2] | Yu, D., Morris-Natschke, S. L. & Lee, K.-H.; (2007) Med. Res. Rev. 27, 108–132. |
[3] | Abernethy, J. L.; (1969). J. Chem. Educ. 46, 561–568. |
[4] | Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N.; (2010) Arch. Pharm. Res. 33, 5–15. |
[5] | Wang, M.,Wang, L., Li, Y. & Li, Q.; (2001) Transition Met. Chem. 26, 307–310. |
[6] | Basanagouda M., Kulkarni M. V., Sharma D., Gupta V. K., Pranesha P., Sandhyarani P. and Rasal V. P.; (2009) J. Chem. Sci., 121, 485–495. |
[7] | Emmanuel-Giota A. A., Fylaktakidou K. C., Litinas K. E., Nicolaides D. N. and Hadjipavlou-Litina D. J.; (2001) Heterocycl. Chem., 38, 717–722. |
[8] | O’Kennedy, R. & Thornes, R. D. (1997). Coumarins: Biology, Applications and Mode of Action. Wiley & Sons, Chichester. |
[9] | Lakshmi, G. S. P. B., Murthy, Y. L. N., Anjaneyulu, A. S. R. & Santhamma, C.; (1995) Dyes and Pigments 29, pp. 211–225. |
[10] | Abou A., Djandé A., Kakou-Yao R., Saba A. and Tenon A. J.; (2013) Acta Cryst., E69, o1081–o1082. |
[11] | Ouédraogo M., Abou A., Djandé A., Ouari O. and Zoueu T. J.; (2018) Acta Cryst., E74, 530–534. |
[12] | Rigaku OD.; (2015) CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. |
[13] | Burla M. C., Caliandro R., Carrozzini B., Cascarano G. L., Cuocci C., Giacovazzo C., Mallamo M., Mazzone A. and Polidori G., J.; (2015) Appl. Cryst., 48, 306–309. |
[14] | Farrugia L. J.; (2012) J. Appl. Cryst., 45, 849–854. |
[15] | Sheldrick G. M.; (2015) Acta Cryst., C71, 3–8. |
[16] | Spek A. L.; (2009) Acta Cryst., D65, 148–155. |
[17] | Parsons S., Flack H.D. and Wagner T.; (2013) Acta Cryst., B69, 249-259. |
[18] | Wolff S. K., Grimwood D. J., McKinnon J. J., Turner M. J., Jayatilaka D. and Spackman M. A.; (2012) Crystal Explorer. The University of Western Australia. |
[19] | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., et al.; (2013) GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA. |
[20] | Allen F. H., Walson D. G., Orpen A. G., Taylor R.; (1987) J. Chem. Soc., Perkin Trans. II, S1-S9. |
[21] | Abou A., Yoda J., Djandé A., Coussan S. and Zoueu T. J.; (2018) Acta Cryst.; E74: 761–765. |
[22] | Djandé A., Abou A., Kini F., Kambo K. R. and Giorgi M.; (2018) IUCrData, 3, x180927. |
[23] | Gomes L. R., Low J. N., Fonseca A., Matos M. J. and Borges F.; (2016) Acta Cryst., E72, 926–932. |
[24] | Ziki E., Yoda J., Djandé A., Saba A. and Kakou-Yao R.; (2016) Acta Cryst., E72, 1562–1564. |
[25] | Bernstein J., Davis R. E., Shimoni L. and Chang N-L.; (1995) Angew. Chem. Int. Ed. Engl., 34, 1555–1573. |
[26] | Bitzer S. R., Visentin C. L., Hörner M., Nascimento M. A. C. and Filgueiras C. A. L.; (2017) J. Mol. Struct., 1130, 165–173. |
[27] | Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., and Hutchison G. R.; (2012) Journal of Cheminformatics, 4(1), 17. |
[28] | Politzer, P. & Truhlar, D. G. (1981). Editors. Chemical Applications of Atomic and Molecular Electrostatic Potentials. New York: Plenum Press. |
[29] | Stewart, R. F. (1979) Chem. Phys. Lett. 65, 335–342. |
[30] | Murray, J. S. & Politzer, P. (2011) WIREs Comput. Mol. Sci. 1, 153–163. |
[31] | Politzer P. and J. S. Murray J. S.; (2002) Theoretical Chemistry Accounts, 108(3), 134–142. |
[32] | Fleming I.; (1976) Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, London, UK. |
[33] | Pearson R. G.; (1986) Proceedings of the National Academy of Sciences of the United States of America, 83(22), 8440–8841. |
[34] | Mulliken R. S.; (1955) The Journal of Chemical Physics, 23(10), 1833–1840. |
[35] | Mulliken R. S.; (1955) The Journal of Chemical Physics, 23(10), 1841–1846. |
[36] | Mulliken R. S.; (1955) The Journal of Chemical Physics, 23(12), 2338–2342. |
[37] | Mulliken R. S.; (1955 The Journal of Chemical Physics, 23(12), 2343–2346. |
[38] | Y.-X. Sun, Q.-L. Hao, W.-X.Wei et al., (2009) Journal of Molecular Structure: THEOCHEM, vol. 904, no.1–3, pp. 74–82. |
[39] | R. Zhang, B. Du, G. Sun, and Y. Sun; (2010) Spectrochimica Acta A, vol. 75, no. 3, pp. 1115–1124. |
[40] | S. Yazıcı, Ҫ. Albayrak, I. Gümrükçüoǧlu, I. Șenel, and O. Büyükgüngör; (2011) Journal of Molecular Structure, vol. 985, no. 2-3, pp. 292–298. |
[41] | D. S. Chemia and J. Zyss, Non LinearOptical Properties of Organic Molecules and Crystal, Academic Press, New York, NY, USA, 1987. |
[42] | J. Zyss, Molecular Non Linear Optics, Academic Press, Boston, Mass, USA, 1994. |
[43] | A. Ben Ahmed, H. Feki, Y. Abid, and C. Minot; (2010) Spectrochimica Acta A, vol. 75, no. 4, pp. 1315–1320. |
[44] | Suponitsky, K.Y., Tafur, S, Masunov A.E.; (2008) Journal of Chemical Physics, 129, 044109-11. |
[45] | Avci, D., Başoğlu A., Atalay, Y.; (2011) International Journal of Quantum Chemistry, 111, 1, 130-147. |
[46] | Machado, A.E.H., Neto, N.M.B., Ueno, L.T., et al.; (2008) Journal of Photochemistry Photobiology A-Chemistry, 199, 1, 23–33. |
[47] | Abraham, J.P., Sajan, D., Hubert, Joe I.H. and Jayakumar, V.S.; (2008) Spectrochimica Acta Part A, 71, 2, 355-367. |
[48] | Karamanis, P, Pouchan, C. and Maroulis, G.; (2008) Physical Review A, 77, 013201-013208. |
[49] | Ben Ahmed, A., Feki, H., Abid, Y., Boughzala, H. and Mlayah, A.; (2008) Journal of Molecular Structure, 888, 1-3, 180-186. |
[50] | Nkungli, N.K.; Ghogomu, J.N.; (2016) J. Theor. Chem., 2016, 1–19. |
[51] | Pluta, T.; Sadlej, A.J.; (2001) J. Chem. Phys., 114, 136. |
[52] | Song, X.; Farwell, S.O.; (2004) J. Anal. Appl. Pyrolysis, 71, 901–915. |
[53] | Eșme , A., Güneșdoǧdu Saǧdinç, S.; (2014) BAÜ Fen Bil. Enst. Dergisi Cilt 16(1) 47-75. |