[1] | Alagarsamy, V.; Rajasolomon, V.; Meena, R.; Ramseshu, K.V. Synthesis, analgesic, anti-inflammatory and antibacte rial activities of some novel 2-butyl 3-substituted quinazolin -4(3H)- ones. Biol. Pharm. Bull. 2005, 28, 1091–1094. |
[2] | Kant, P. Synthesis and anti-microbial activities of somenew 2-substituted 3(1′-aryl-4′-nitrophenyl imidazol-5′-yl) a mino quinazolin-4-ones. Indian J. Heterocycl. Chem. 2006, 15, 221–224. |
[3] | El-Hiti, G.A.; Abdel-Megeed, M.F.; Zied, T.M.M. Synthesis and reaction of some 3-aryl 2-thioxo quinazolin-4 (3H)-ones. Indian J. Chem. 2002, 41B, 1519–1522. |
[4] | Alagarsamy, V.; Thangathirupathi, A.; Mandal, S.C.; Raja-sekaran, S.; Vijayakumar, S.; Revathi, R.; Anburaj, J.; Arunkumar, S.; Rajesh, S. Pharmacological evaluation of 2-substituted (1,3,4)-thiadiazolo quinazolines. Indian J. Pharm. Sci. 2006, 68, 108–111. |
[5] | Nandy, P.; Vishalakshi, M.T.; Bhat, A.R. Synthesis and antitubercular activity of mannich bases of 2-methyl 3H-quinazolin-4-ones. Indian J. Heterocycl. Chem. 2006, 15, 293–294. |
[6] | Gali, R.; Banothu, J, Porika, M.; Velpula, R; Hnamte, S; Bavantula, R.; Abbagani, S; Busi, S., Indolylmethylene benzo[h]thiazolo [2,3-b] quinazolinones: Synthesis, characterization and evaluation of anticancer and antimicrobial activities. Bioorg. Med. Chem. Lett. 2014, 24, 4239–4242. |
[7] | Moure, A.; Orzaez, M.; Sancho, M.; Messeguer, A. Synthesis of enantiomerically pure perhydro -1,4- diazepine -2,5-dione and 1,4-piperazine-2,5-dione derivatives exhibiting potent activity as apoptosis inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 7097–7099. |
[8] | Chandregowda V, Kush AK, Chandrasekara Reddy G. Synthesis and invitro antitumor activities of novel 4-anilinoquinazoline derivatives. Eur. J. Med. Chem. 2009, 44, 3046–3055. |
[9] | Al-Rashood, S.T.; Aboldahab, I.A.; Nagi, M.N.; Abouzeid, L.A.; Abdel-Aziz, A.A.; Abdel-Hamide, S.G.; Youssef, K.M.; Al-Obaid, A.M.; El-Subbagh, H.I. Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs. Bioorg. Med. Chem. 2006, 14, 8608–8621. |
[10] | Insuasty, B.; Orozco, F.; Lizarazo, C.; Quiroga, J.; Abnia, R.; Hursthouse, M., Nogueras, M., Cobo, J. Synthesis of new in deno[1,2-e] pyrimido[4,5-b] [1,4] diazepine-5,11-diones as potential antitumor agents. Bioorg. Med. Chem. 2008, 16, 8492–8500. |
[11] | Alafeefy, A.M.; Alqasoumi, S.I.; Ashour, A.E.; Masand, V.; Al-Jaber, N.A.; Hadda, T.B.; Mohamed MA. Quinazo line-tyrphostin as a new class of antitumor agents, molecular properties prediction, synthesis and biological testing. Eur. J. Med. Chem. 2012, 53,133-140. |
[12] | Wu, L., Zhang, C., Li, W. Regioselective synthesis of 6-aryl benzo[h] [1,2,4]-triazolo[5,1-b] quinazoline-7,8-diones as potent antitumoral agents. Bioorg. Med. Chem. Lett. 2013, 23,5002–5005. |
[13] | Kumar, A.; Sharma, P.; Kumari, P.; Kalal, B.L. Exploration of antimicrobial and antioxidant potential of newly synthesized 2,3-disubstituted quinazoline-4(3H)-ones. Bioorg. Med. Chem. Lett. 2011, 21, 4353–4357. |
[14] | Rohini, R.; Muralidhar Reddy, P.; Shanker, K.; Hu, A.; Ravinder, V. Antimicrobial study of newly synthesized 6-substituted indolo[1,2-c] quinazolines. Eur. J. Med. Chem. 2010, 45, 1200–1205. |
[15] | Jatav, V.; Kashaw, S.; Mishra, P. Synthesis and antimi crobial activity of some new 3–[5-(4-substituted) phenyl-1,3,4-oxadiazole-2yl]-2-styrylquinazoline-4(3H)-ones. Med. Chem. Res. 2008, 17, 205–211. |
[16] | Ji, Q.; Yang, D.; Wang, X.; Chen, C.; Deng, Q.; Ge, Z.; Yuan, L.; Yang, X.; Liao, F. Design, synthesis and evaluation of novel quinazoline-2,4-dione derivatives as chitin synthase inhibitors and antifungal agents. Bioorg. Med. Chem. 2014, 22, 3405–3413. |
[17] | Ugale, V.G.; Bari, S.B. Quinazolines: New horizons in anticonvulsant therapy. Eur. J. Med. Chem. 2014, 80, 447–501. |
[18] | El-Subbagh, H.I.; Hassan, G.S.; El-Azab, A.S.; Abdel-Aziz, A.A.M.; Kadi, A.A.; Al-Obaid, A.M.; Al-Shabanah, O.A.; Sayed-Ahmed, M.M. Synthesis and anticonvulsant activity of some new thiazolo[3,2-a][1,3]diazepine, benzo[d] thiazolo [5,2-a] [12,6] diazepine and benzo [d] oxazolo [5,2-a][12,6] diazepine analogues. Eur. J. Med. Chem. 2011, 46, 5567–5572. |
[19] | Fader, L.D.; Landry, S.; Morin, S.; Kawai, S.H.; Bousquet, Y.; Hucke, O.; Goudreau, N.; Lemke, C.T.; Bonneau, P.; Titolo, S.; et al. Optimization of a 1,5 dihydrobenzo[b][1,4] diazepine-2,4-dione series of HIV capsid assembly inhibitors 1: Addressing configurational instability through scaffold modification. Bioorg. Med. Chem. Lett. 2013, 23, 3396–3400. |
[20] | Zhang, N.; Zhang, P.; Baier, A.; Cova, L.; Hosmane, R.S. Dual inhibition of HCV and HIV by ring-expanded nucleosides containing the 5:7-fused imidazo [4,5-e] [1,3] diazepine ring system. In vitro results and implications. Bioorg. Med. Chem. Lett. 2014, 24, 1154–1157. |
[21] | Xiao, H.; Li, P.; Hu, D.; Song, B.A. Synthesis and anti-TMV activity of novel ß-amino acid ester derivatives containing quinazoline and benzothiazole moieties. Bioorg. Med. Chem. Lett. 2014, 24, 3452–3454. |
[22] | Hussain, H.H.; Babic, G.; Durst, T.; Wright, J.S.; Flueraru, M.; Chichirau, A.; Chepelev, L.L. Development of Novel Antioxidants: Design, Synthesis, and Reactivity. J. Org. Chem. 2003, 68, 7023–7032. |
[23] | Rajasekaran, S.; Rao, G.; Sanjay, P.P.N.; Sodhi, G.S. Synthesis, Antibacterial and invitro Antioxidant Activity of 2,3-Substituted Quinazolin-4(3H)-ones. J. Chem. Pharm. Res. 2010, 2, 482–488. |
[24] | Saravanan, G.; Alagarsamy, V.; Prakash, C.R. Synthesis and evaluation of antioxidant activities of novel quinazolinone derivatives. Int. J. Pharm. Pharm. Sci. 2010, 2, 83–86. |
[25] | Al-Amiery, A.A.; Kadhum, A.A.H.; Shamel, M.; Satar, M.; Khalid, Y.; Mohamad, A. Antioxidant and antimicrobial activities of novel quinazolinones. Med. Chem. Res. 2014, 23, 236–242. |
[26] | Verbanac, D.; Malik, R.; Chand, M.; Kushwaha, K.; Vashist, M.; Matijašić, M.; Stepanić, V.; Perić, M.; Paljetak, H.Č.; Saso, L.; Jain, S.C. Synthesis and evaluation of antibacterial and antioxidant activity of novel 2-phenyl-quinoline analogs derivatized at position 4 with aromatically substituted 4H-1,2,4-triazoles. J. Enzym. Inhib. Med. Chem. 2016, 31 (Suppl. 2), 104–110. |
[27] | Kazemi, S.S.; Keivanloo, A.; Nasr-Isfahani, H.; Bamoniri, A. Synthesis of novel 1,5-disubstituted pyrrolo [1,2-a] quinazolines and their evaluation foranti-bacterial and antioxidant activities. RSC Adv. 2016, 6, 92663–92669. |
[28] | Al-Azawi, K. Synthesis, Characterization and Antioxidant Studies of Quinazolin Derivatives. Orient. J. Chem. 2016, 32, 585–590. |
[29] | Al-Salahi, R.; Anouar, E.H.; Marzouk, M.; Taie, H.A.; Abuelizz, H.A. Screening and evaluation of antioxidant activity of some 1,2,4-triazolo[1,5-a] quinazoline derivatives. Future Med. Chem. 2018, 10, 367–378. |
[30] | Kamat, J.P.; Ghosh, A.; Devasagayam, T.P. Vanillin as an antioxidant in rat liver mitochondria: Inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol. Cell. Biochem. 2000, 209, 47–53. |
[31] | Santosh Kumar, S.; Priyadarsini, K.I.; Sainis, K.B. Free radical scavenging activity of vanillin and o-vanillin using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Redox Rep. 2002, 7, 35–40. |
[32] | Castor, L.R.; Locatelli, K.A.; Ximenes, V.F. Pro-oxidant activity of apocynin radical. Free Radic. Biol. Med. 2010, 48, 1636–1643. |
[33] | Akihiro, T.; Futoshi, Y.; Takeshi, S.; Hideyuki, I. Evaluation of antioxidant activity of vanillin by using antioxidant assays. Biochim. Biophys. Acta 2011, 1810, 170–177. |
[34] | Niazi, J.; Kaur, N.; Sachdeva, R.; Bansal, Y.; Gupta, V. Anti-inflammatory and antinociceptive activity of vanillin. Drug Dev. Ther. 2014, 5, 145–147. |
[35] | Gilbert Reibnegger. An ab initio and density functional theory study on neutral pterin radicals. Pteridines 2015, 26, 135–142. |
[36] | Al-Sehemi, A.G.; Irfan, A.; Asiri, A.M.; Ammar, Y.A. Synthesis, characterization and density functional theory study of low cost hydrazone sensitizers. Bull. Chem. Soc. Ethiop. 2015, 29, 137–148. |
[37] | Al-Sehemi, A.G.; Irfan, A.; Alrumman, S.A.; Hesham, A. Antibacterial activities, DFT and QSAR studies of quinazolinone compounds. Bull. Chem. Soc. Ethiop. 2016, 30, 307–316. |
[38] | Al-Sehemi, A.; Irfan, A. Effect of donor and acceptor groups on radical scavenging activity of phenol by density functional theory. Arab. J. Chem. 2017, 10, S1703–S1710. |
[39] | Al-Salahi, R.; Anouar, El.; Marzouk, M.; Taie, H.A.A.; Abuelizz, H.A. Screening and evaluation of antioxidant activity of some 1,2,4-triazolo[1,5-a] quinazoline derivatives. Future Med. Chem. 2017, 10, 379–390. |
[40] | Nasab, R.R.; Hassanzadeh, F.; Khodarahmi, G.A.; Mirzaei, M.; Rostami, M.; abadi, A.J. Synthesis, characterization, cytotoxic screening, and density functional theory studies of new derivatives of quinazolin-4(3H)-one Schiff bases. Res. Pharm. Sci. 2017, 12, 444–455. |
[41] | Almehizia, A.A.; Abuelizz, H.A.; Taie, H.A.; ElHassane, A.; Marzouk, M.; Al-Salahi, R. Investigation the antioxidant activity of benzo[g]triazoloquinazolines correlated with a DFT study. Saudi Pharm. J. 2019, 27, 133–137. |
[42] | Vereshchagina, N.N.; Postovskii, Y.Z. Zh. Obshch. Khim. 1964, 34, 1745–1748; Chem. Abstr. 1964, 60, 1743c. |
[43] | Hamada, N.M. Synthesis, Spectroscopic Characterization, and Time Dependent DFT Calculations of 1-Methyl-5-phenyl-5Hpyrido[1,2-a] quinazoline-3,6-dione and Its Starting Precursor in Different Solvents. Chemistry Open 2018, 7, 814–823. |
[44] | Brand-Willams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. |
[45] | Espin, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of Total Free Radical Scavenger Capacity of Vegetable Oils and Oil Fraction Using 2,2-Diphenyl-1-picrylhydrazyl Radical. J. Agric. Food Chem. 2000, 48, 648–656. |
[46] | Yu, L. Free Radical Scavenging Properties of Conjugated Linoleic Acids. J. Agric. Food Chem. 2001, 49, 3452–3456. |
[47] | Liang, N.; Kitts, D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules 2014, 19, 180–208. |
[48] | Nagwa, M.M.; Nadia, Y.; Abdo, M. Synthesis, Characterization, Antimicrobial Screening and Free-Radical Scavenging Activity of Some Novel Substituted Pyrazoles. Molecules 2015, 20, 10468–10486. |
[49] | Fukumotoand, L.R.; Mazza, G. Assessing Antioxidant and Prooxidant Activities of Phenolic Compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. |
[50] | Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammo Pharmacol. 2007, 15, 252–259. |
[51] | Kohn, W.; Becke, A.D.; Parr, R.G. Density functional theory of electronic structure. J. Phys. Chem. 1996, 100, 12974–12980. |
[52] | Arshad, M.N.; Mahmood, T.; Khan, A.F.; Zia-Ur-Rehman, M.; Asiri, A.M.; Khan, I.U.; Nisa, R.-U. Synthesis, Crystal Structure and Spectroscopic Properties of 1,2-Benzothiazine Derivatives: An Experimental and DFT Study. Chin. J. Struct. Chem. 2015, 34, 15–25. |
[53] | Arshad, M.N.; Asiri, A.M.; Alamry, K.A.; Gilani, T.; Mahmood, M.A.; Ayub, K.; Birinji, A.S. Synthesis, crystal structure, spectroscopic and density functional theory (DFT) study of N-[3-anthracen-9-yl-1-(4-bromo-phenyl)-allylidene]-N-benzenesulfonohydrazine. Spectrochim. Acta Part A 2015, 142, 364–374. |
[54] | Geerlings, P.; DeProft, F.; Langenaeker, W. Conceptual density functional theory. Chem. Rev. 2003, 103, 793–874. |
[55] | Reyes, R.V.; Zarur, F.N.; Martinez, E. Electronic structure and reactivity analysis for a set of Zn-chelates with substituted 8-hydroxyquinoline ligands and their application in OLED. Org. Electron. 2008, 9, 625–634. |
[56] | Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys. 1978, 68, 3801–3807. |
[57] | Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. |
[58] | Parr, R.G.; Chattraj, P.K. Principle of maximum hardness. J. Am. Chem. Soc. 1991, 113, 1854–1855. |
[59] | Lien, E.J.; Guo, Z.R.; Li, R.L.; Su, C.T. Use of dipole moment as a parameter in drug receptor interaction and quantitative structure-activity relationship studies. J. Pharm. Sci. 1982, 71, 641–655. |
[60] | Conde, J.P.; Moura-Ramos, J.J. Study of Conformational Equilibria by Dipole Moment Measurements. J. Chem. Educ. 1986, 63, 823–826. |
[61] | Kosar, B.; Albayrak, C. Spectroscopic investigations and quantum chemicalcomputational study of (E)-4 -methoxy-2-[(p-tolylimino) methyl] phenol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 78, 160–167. |
[62] | Alam, M.J.; Ahmad, S. Quantum chemical and spectroscopic investigations of 3-methyladenine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 653–664. |
[63] | Alam, M.J.; Ahmad, S. FTIR, FT-Raman, UV-Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 961–978. |
[64] | Alam, M.J.; Ahmad, S. Anharmonic vibrational studies of L-aspartic acid using HF and DFT calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 96, 992–1004. |
[65] | Cioslowski, J.; Fox, D.J. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009. |
[66] | ChemCraft 1. 6, is a Windows-based graphical program for working with quantum chemistry calculations. It is an affordable and convenient tool for visualization of chemical data and preparing new jobs for calculation. Programming: G. A. Zhurko, site design, additional support: D. A. Zhurko, Web programming: A. Romanov, 2011, http://www.chemcraftprog.com/. |
[67] | Murray, J.S.; Sen, K.D. Molecular Electrostatic Potentials: Concepts and Applications (Theoretical and Computational Chemistry); Elsevier: Amsterdam, The Netherlands, 1996; Volume 3. |