[1] | a) Kondo, T.; Mitsudo, T-A. Chem. Rev. 2000, 100, 3205. b) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041. c) Liu, G.; Link, J. T.; Pei, Z.; Reilly, E. B.; Leitza, S.; Nguyen, B.; Marsh, K.C.; Okasinski, G. F.; von Geldern, T. W.; Ormes, M.; Fowler, K.; and Gallatin, M. J. Med. Chem. 2000, 43, 4025. d) Sawyer, J. S.; Schmittling, E. A.; Palkowitz, J. A.; Smith, W. J. J. Org. Chem. 1998, 63, 6338. |
[2] | (a) Metzner, P. Top. Curr. Chem. 1999, 204, 127. (b) Boger, D. L. Tetrahedron. 1983, 39, 2869. (c) Barluenga, J.; Tomas, M. Adv. Heterocycl. Chem. 1993, 57, 1. |
[3] | Westmijze, H.; Kleijn, H.; Miejer, J.; Vermeer, P. Synthesis. 1979, 6, 432. |
[4] | Gosselin, P.; Masson, S.; Thuillier, A. Tetrahedron Lett. 1980, 21, 2421. |
[5] | (a) Masson, S.; Thuillier, A. Tetrahedron Lett. 1982, 23, 4087. (b) Rettberg, N.; Wagner, U.; Hartke, K. Arch. Pharm. (Weinheim, Ger.) 1993, 326, 977. (c) Lawson, K. R.; Singleton, A.; Whitham, G. H. J. Chem. Soc., Perkin Trans.1, 1984, 859. |
[6] | Hartke, K.; Kunze, O. Liebigs Ann. Chem. 1989, 4, 321. |
[7] | Hoffman, R.; Hartke, K. Chem. Ber. 1980, 113, 919. |
[8] | Scheithauer, S.; Mayer, R. 'Topics in Sulphur Chemistry: Thio- and Dithio-carboxylic Acids and Their Derivatives,' ed. A. Senning, Thieme, Stuttgart, 1979, Vol. 4. |
[9] | Colonge, J.; Descortes, G. in '1,4-Cycloaddition Reactions,' ed. Hamer, J. Academic Press, New York, 1967, 217, Desimini, G.; Tacconi, G. Chem. Rev., 1975, 75, 651. Weinreb, S. M.; Staib, R. R. Tetrahedron, 1982, 38, 3087. |
[10] | Meyers, A. I.; Tait, T. A.; Comins, D. L. Tetrahedron Lett., 1978, 4657. |
[11] | Westmijze, H.; Kleijn, H.; Meijer, J.; Vermeer, P. Synthesis, 1979, 432. |
[12] | Hoffmann, R.; Hartke, K. Chem. Ber., 1980, 113, 919. |
[13] | Gosselin, P.; Masson, S.; Thullier, A. Tetrahedron Lett., 1978, 2715; Thullier, A.; Gosselin, P.; Masson, S. ibid. 1980, 21, 2421. |
[14] | Colonge, J.; Descortes, G. in '1,4-Cycloaddition Reactions,' ed. Hamer, J. Academic Press, New York, 1967, 217; Desimini, G.; Tacconi, G. Chem. Rev., 1975,75,651; Weinreb, S. M.; Staib, R. R. Tetrahedron. 1982, 38, 3087. |
[15] | Masson, S.; Thullier, A. Tetrahedron Lett., 1982, 23, 4087. |
[16] | Theron, F.; Verny, M.; Vessiere, R. The Chemistry of the Carbon-Carbon Triple Bond; Patai, S., Ed.; John-Wiley & Sons: Chichester, 1978, Part 1, Chapter 10. |
[17] | Yoshimatsu, M.; Naito, M.; Kawahigashi, M.; Shimizu, H.; Kataoka, T. J. Org. Chem. 1995, 60, 4798. |
[18] | Hanzawa, Y., Tabuchi, N.; Taguchi, T. Tetrahedron Lett. 1998, 39, 6249. |
[19] | Zhongt, P.; Xiongt, Z-X.; and Huang, X. Synthetic Communications, 2000, 30, 2793-2800. |
[20] | Ruchwald, S. L., Lamaire, S. J., Nielsen, R. B., Watson, B. T. and King, S. M. Tetrahedron Lett. 1987, 28, 3895. |
[21] | Harpp, D. N., Friedlander, B. T. and Smith, R. A. Synthesis, 1979, 181. |
[22] | (a) Des Mazery, R.; Pullez, M.; López, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 9966; (b) Howell, G.P.; Fletcher, S. P.; Geurts, K.; ter Horst, B.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 14977; (c) van Summeren, R. P.; Moody, D. B.; Feringa, B. L.; Minnaard, A. J. J. Am. Chem. Soc. 2006, 128, 4546; (d) ter Horst, B.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2007, 9, 3013. |
[23] | Classical methods such as coupling of acids with thiols using DCC/DMAP and transesterification with trimethylsilyl thioethers in presence of AlCl3 occasionally lead to some amount of side product due to 1,4-addition of thiolate to the product (See: Thesis entitled ‘Enantioselective copper catalyzed allylic alkylation using Grignard reagents’ submitted by van Zijl, AW, University of Groningen). |
[24] | van Zijl, A. W.; Minnaard, A. J.; Feringa, B. L. J Org Chem. 2008, 73, 5651. |
[25] | Mohite, A. R.; Mete, T. B.; Bhat. R. G. Tetrahedron Letters, 2017, 58, 770–774. |
[26] | (a) Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004–11009. (b) Wiberg, K. B. J. Chem. Educ. 1996, 73, 1089–1095. (c) Cronyn, M. W.; Chang, M. P.; Wall, R. A. J. Am. Chem. Soc. 1955, 77, 3031–3034. |
[27] | (a) Staunton, J.; Weissman, K. J. Nat. Prod. Rep. 2001, 18, 380–416. (b) Stryer, L. Biochemistry, 4th ed.; Freeman: New York, 1995. (c) Bruice, T. C.; Benkovic, S. J. Bioorganic mechanisms; Benjamin, W. A. New York, 1966, Vol. 1. |
[28] | (a) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325–335. (b) Fortner, K. C.; Shair, M. D. J. Am. Chem. Soc. 2007, 129, 1032–1033. (c) Gennari, C.; Vulpetti, A.; Pain, G. Tetrahedron 1997, 53, 5909–5924. (d) Kobayashi, S.; Uchiro, H.; Fujishita, Y.; Shiina, I.; Mukaiyama, T. J. Am. Chem. Soc. 1991, 113, 4247–4252. (e) Gennari, C.; Beretta, M. G.; Bernardi, A.; Moro, G.; Scolastico, C.; Todeschini, R. Tetrahedron. 1986, 42, 893–909. (f) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099–3111. |
[29] | McGarvey, G. J.; Williams, J. M.; Hiner, R. N.; Matsubara, Y.; Oh, T. J. Am. Chem. Soc. 1986, 108, 4943–4952. |
[30] | Fukuyama, T.; Lin, S.-C.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050–7051. |
[31] | (a) Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L. S. Org. Lett. 2003, 5, 3033–3035. (b) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260–11261. |
[32] | For a review on thioester chemistry developed in the last 10 years, see: Fujiwara, S.-I.; Kambe, N. Top. Curr. Chem. 2005, 251, 87–140. |
[33] | van Zijl, A. W.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2008, 73, 5651–5653. |
[34] | Nair, S. K.; Jose, A. M.; Asokan, C. V. Synthesis. 2005, 8, 1261. |
[35] | a) Barton, D. H. R.; Chen,M.; Jaszberenyi, J. C.; Rattigan, B.; Tang, D. Tetrahedron Lett. 1994, 35, 6457; (b) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. Tetrahedron Lett. 1990, 31, 4681; (c) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. Tetrahedron Lett. 1991, 32, 2569; (d) Barton, D. H. R.; Motherwell, W.B. Pure Appl Chem. 1981,1. |
[36] | Isola, M.; Ciuffarin, E.; Sangramora, L. Synthesis. 1976, 326. |
[37] | (a) Degani, I.; Fochi, R. J.; Regondi, V. S. Synthesis. 1981, 149. (b) Baker, R.; Mahony, M.; Sawin, C. J. J. Chem. Soc. Perkin Trans I. 1987, 1623. |
[38] | (a) Chugaev, L. Chem. Ber.1899, 32, 3332. (b) Nace, H. R. Org. React. 1962, 12, 57. |
[39] | Barton, D. H. R.; Combie, S. W. J. Chem. Soc Perkin Trans I. 1975, 1574. |
[40] | (a) Tanaka, K.; Yamagishi, N.; Tanikaga, R.; Kaji, A. Chem. Soc. Japan. 1979, 52, 3619. (b) Degani, I.; Fochi, R.; Regondi, V. S. Synthesis. 1979, 178. |
[41] | Okawata, M.; Nakai, T.; Otsuji, Y.; Imoto, E. J Org Chem. 1965, 30, 2025. (b) Barton, D. H. R. Tetrahedron. 1992, 48, 2529. (c) Zard, S. Z. Angrew Chem. Int. Ed. 1997, 36, 672. |
[42] | Nieuwenhuizen, P. J.; Ethers, A. W.; Haasnoot, J. G.; Janse, S. R.; Reedijk, J.; Baerends, E. J. Am. Chem. Soc. 1999, 121, 163. |
[43] | Zhang, D.; Chen, J.; Liang, Y.; Zhou, H. Synth. Commun. 2005, 35, 521. |
[44] | Curren, D. P. Synthesis.1988, 417,489. |
[45] | (a) Ferrier, R. J.; Vethavisar, V. Chem Commun. 1970, 1385. (b) Baldwin, J. E.; Holfe,G. A. J. Am. Chem. Soc.1971, 93. (c) Nakai, T.; Ari- Izumi, A. Tetrahedron Lett. 1976, 2335. |
[46] | (a) Meurling, P.; Sjoberg, K.; Sjoberg, B.; Acta Chem Scand. 1972, 26, 279. (b) Mori, T. M.; Taguchi, T. Synthesis. 1975, 469. (c) Degani, I.; Foch, R.; Santi, M. Synthesis. 1977, 873. |
[47] | Chaturbedi, D.; Ray, S. J. Sulfur Chem. 2006, 27, 265. |
[48] | Chaturbedi, D.; Ray, S. Monatsh Chem. 2006, 137, 1219. |
[49] | (a) Ugi, I.; Domling, A.; Hori, W. Endeavour. 1994, 18, 115. (b) Armstrong, R. M.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123. |
[50] | Bienayme, H.; Hume, C.; Oddon, G.; Schmidt, P. Chem Eur J. 2000, 6, 3321. |
[51] | (a) Nielsen, T. E.; Schrieber, S. L. Angrew Chem Int Ed. 2008, 47, 48. (b) Domling, A.; Ugi, I. Angrew Chem. Int. Ed. 2000, 39, 48. |
[52] | Ganem B. Acc. Chem. Res. 2009, 42, 463. |
[53] | Patra, G. C.; Pal, S.; Bhunia, S. C.; Hazra, N. K.; Pal, S. C. Ind. J. Chem. 2016, 55B, 471-477. |
[54] | Biswas, K.; Ghosh, S.; Ghosh, P.; Basu, B. Cyclic ammonium salts of dithiocarbamic acid: stable alternative reagents for the synthesis of S-alkyl carbodithioates from organyl thiocyanates in water, Journal of Sulfur Chemistry, 2016, 37(4), 361-376. |
[55] | Guzman, M. L.; Rossi, R. M.; Karnischky, L. et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005, 105, 4163–4169. |
[56] | Siveen, K.S.; Uddin, S.; Mohammad, R. M. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer, 2017, 16, 13. |
[57] | Sarkozy, C.; Gardin, C.; Gachard, N.; et al. Outcome of older patients with acute myeloid leukemia in first relapse. Am J Hematol, 2013, 88, 758–764. |
[58] | Lapidot, T.; Sirard, C.; Vormoor, J. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367, 645–648. |
[59] | Sarry, J-E.; Murphy, K.; Perry, R. et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2R gamma c-deficient mice. J Clin Invest 2011, 121, 384–395. |
[60] | Stiehl, T.; Baran, N.; Ho, A. D.; Marciniak-Czochra, A. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res. 2015, 75, 940–949. |
[61] | Ho, T-C.; LaMere, M.; Stevens, B.M. et al. Evolution of acute myelogenous leukemia stem cell properties following treatment and progression. Blood, 2016, 128, 1671–1678. |
[62] | Shlush, L. I.; Mitchell, A.; Heisler, L. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature, 2017, 547, 104–108. |
[63] | Thomas, D.; Majeti, R. Biology and relevance of human acute myeloid leukemia stem cells. Blood, 2017, 129, 1577–1585. |
[64] | Eppert, K.; Takenaka, K.; Lechman, E. R. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011, 17, 1086–1091. |
[65] | Chan, W. I.; Huntly, B. J. Leukemia stem cells in acute myeloid leukemia. Semin Oncol. 2008, 35, 326–335. |
[66] | Jin, L.; Hope, K. J.; Zhai, Q. et al. Targeting of CD44 eradicates human acute myeloid leukemia stem cells. Nat Med. 2006, 12, 1167–1174. |
[67] | Dinga, Y.; Yanga, Z.; Gea, W.; Kuanga, B.; Xuc, J.; Yanga, J.; Chena, Y.; Zhang, Q. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33(1), 1376–1391. |
[68] | Ware, G. W.; Whitcare, D. M. The pesticide book, 6th ed. Willoughby: Meister Pro Information Resources; 2004. |
[69] | Caldas, E. D.; Conceicüao, M. H.; Miranda, M. C. C.; de Souza, L.C.K.R.; Lima, J.F. Determination of dithiocarbamate fungicide residues in food by a spectrophotometric method using a vertical disulfide reaction system. J Agric Food Chem. 2001, 49, 4521–4525. |
[70] | Rafin, C.; Veignie, E.; Sancholle, M. Synthesis and antifungal activity of novel bisdithiocarbamate derivatives of carbohydrates against fusarium oxysporum f. sp. lini. J Agric Food Chem. 2000, 48, 5283–5287. |
[71] | Perz, R.C.; van Lishaut, H.; Schwack, W. CS2 blinds in brassica crops: false positive results in the dithiocarbamate residue analysis by the acid digestion method. J Agric Food Chem. 2000, 48, 792–796. |
[72] | Husain, A.; Nami, S.A.A.; Singh, S.P.; Oves, M.; Siddiqi, K.S. Anagostic interactions, revisiting the crystal structure of nickel dithiocarbamate complex and its antibacterial and antifungal studies. Polyhedron. 2011, 30, 33–40. |
[73] | Shaheen, F.; Badshah, A.; Gielen, M. et al. Synthesis, characterization, antibacterial and cytotoxic activityof new palladium (II) complexes with dithiocarbamate ligands: X-ray structure of bis(dibenzyl-1-S:S’-dithiocarbamato) Pd (II). J Organomet. Chem. 2007, 692, 3019–3026. |
[74] | Manav, N.; Mishra, A.K.; Kaushik, N.K. In vitro antitumour and antibacterial studies of some Pt(IV) dithiocarbamate complexes. Spectrochim Acta Part A. 2006, 65, 32–35. |
[75] | Yurttas, L.; Ozkay, Y.; Demirci, F. et al. Synthesis, anticandidal activity, and cytotoxicity of some thiazole derivatives with dithiocarbamate side chains. Turk J Chem. 2014, 38, 815–824. |
[76] | Alagarsamy, V.; Narendhar, B.; Sulthana, M.T.; Solomon, V.R. Design and synthesis of 3-(4-chlorophenyl)-2-(2-(4-substituted)-2-oxoethylthio)quinazolin-4(3H)-one as antihistamine agents. Med Chem Res. 2014, 23, 4692–4699. |
[77] | Ghorbani-Vaghei, R.; Amiri, M.; Veisi, H. et al. A new and facile protocol for the synthesis of dithiocarbamate-linked 3,4-dihydro-2H-pyran using N-halo catalysts under mild conditions reaction. Bull Korean Chem Soc. 2012, 33, 4047–4051. |
[78] | Cui, J-L.; Ge, Z-M.; Cheng, T-M.; Li, R-T. An efficient one-pot synthesis of 2-hydroxyalkyl dithiocarbamates. Synth Commun. 2003, 33, 1969–1976. |
[79] | Scozzafava, A.; Mastorlorenzo, A.; Supuran, C.T. Arylsulfonyl-N,N-diethyl-dithiocarbamates: a novel class of antitumor agents. Bioorg Med Chem Lett. 2000, 10, 1887–1891. |
[80] | Hawthorne, M.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive potential of sulforamate, a novel analogue of sulforaphane that induces phase 2 drug-metabolizing enzymes. Cancer Res. 1997, 57, 272–278. |
[81] | Medford, R.M.; Saxena, U.; Hoong, L.K.; Somers, P.K. N-substituted dithiocarbamates for the treatment of biological disorders. United States patent US 6,747,061B2. 2004 Jun 8. |
[82] | Cao, S-L.; Feng, Y-P.; Jiang, Y-Y. et al. Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg Med Chem Lett. 2005, 15, 1915–1917. |
[83] | Goel, A.; Majur, S.J.; Fattah, R.J. et al. Benzamide-based thiolcarbamates: a new class of HIV-1 NCp7 inhibitors. Biorg Med Chem Lett. 2002, 12, 767–770. |
[84] | Suh, Y-G.; Lee, Y-S.; Min, K-H. et al. Novel potent antagonists of transient receptor potential channel, vanilloid subfamily member 1: structure-activity relationship of 1,3-diarylalkyl thioureas possessing new vanilloid equivalents. J Med Chem. 2005, 48, 5823–5836. |
[85] | Guerrini, L.; Garcia-Ramos, J.V.; Domingo, C.; Sanchez-Cortes, S. Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced Raman scattering. Anal Chem. 2009, 81, 953–960. |
[86] | Zhao, Y.; Pérez-Segarra, W.; Shi, Q.; Wei, A. Dithiocarbamate assembly on gold. J Am Chem Soc. 2005, 127, 7328–7329. |
[87] | Nieuwenhuizen, P.J.; Ehlers, A.W.; Hassnot, J.G. et al. Themechanism of zinc(II)-dithiocarbamateaccelerated vulcanization uncovered; theoretical and experimental evidence. J Am Chem Soc. 1999, 121, 163–168. |
[88] | Bathfield, M.; D’Agosto, F.; Spitz, R.; Charreyre, M.T.; Delair, T. Versatile precursors of functional RAFT agents. Application to the synthesis of bio-related end-functionalized polymers. J Am Chem Soc. 2006, 128, 2546–2547. |
[89] | Lai, J.T.; Shea, R.J. Controlled radical polymerization by carboxyl- and hydroxyl-terminated dithiocarbamates and xanthates. Polym Sci Part A: Polym Chem. 2006, 44, 4298–4316. |
[90] | Dureaault, A.; Gnanou, Y.; Taton, D.; Destarac, M.; Leising, F. Reaction of cyclic tetrathiophosphates with carboxylic acids as a means to generate dithioesters and control radical polymerization by RAFT. Angew Chem Int Ed. 2003, 42, 2869–2872. |
[91] | Boas, U.; Gertz, H.; Christensen, J.B.; Heegaard, P.M.H. Facile synthesis of aliphatic isothiocyanates and thioureas on solid phase using peptide coupling reagents. Tetrahedron Lett. 2004, 45, 269–272. |
[92] | Mukerjee, A.K.; Ashare, R. Isothiocyanates in the chemistry of heterocycles. Chem Rev. 1991, 91, 1–24. |
[93] | Aly, A.A.; Brown, A.B.; Bedair, T.M.I.; Ishak, E.A. Dithiocarbamate salts: biological activity, preparation, and utility in organic synthesis. J Sulfur Chem. 2012, 33, 605–617. |