American Journal of Organic Chemistry
p-ISSN: 2163-1271 e-ISSN: 2163-1301
2012; 2(4): 87-96
doi:10.5923/j.ajoc.20120204.03
Ahmed A. Fadda , Ahmed M. El Defrawy , Sherihan A. El-Hadidy
Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
Correspondence to: Ahmed A. Fadda , Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt.
Email: |
Copyright © 2012 The Author(s). Published by Scientific & Academic Publishing.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
A series of substituted 1,8-naphthyridine derivatives were synthesized from 4-oxo-1,4-dihydro-1,8- naphthyridine-3-carbohydrazide (4) as starting material and investigated as cytotoxic and antitumor agents. Compound 4 reacted with different acid anhydrides to afford the corresponding imides and bis-imide derivatives 5-11. Pyridine and 1,8-naphthyridine derivatives 2-11 were tested for their in vitro cytotoxicity against four different cancer cell lines and structure activity relationship’s (SAR’s) was studied. Compounds 4-11 were studied theoretically using the density functional theory (DFT) with B3LYP/6-31(d) level of calculations, and the electronic properties of these compounds were related to their biological activity.
Keywords: 2-Aminopyridine, Diethylethoxymethylenemalonate, 1,8-Naphthyridine, Acid Anhydrides, Cytotoxicity, Molecular Modeling
Cite this paper: Ahmed A. Fadda , Ahmed M. El Defrawy , Sherihan A. El-Hadidy , Synthesis, Cytotoxicity Evaluation, DFT Molecular Modeling Studies and Quantitative Structure Activity Relationship of Novel 1,8-Naphthyridines, American Journal of Organic Chemistry, Vol. 2 No. 4, 2012, pp. 87-96. doi: 10.5923/j.ajoc.20120204.03.
Scheme 1. Synthesis of 4-oxo-1,4-dihydro-1,8-naphthyridine-3- carbohydrazide (4) |
Scheme 2. Synthesis of 1,8-naphthyridine-3-carboxamide derivatives 5-11 |
Figure 1. Routes for the mechanism of formation of 1,8-naphthyridine-3-carboxamide derivatives 5-11 |
|
Figure 2. Confluent Monolayers of cell lines used for testing |
Figure 3. (a) HOMO plots of compounds at B3LYP/6-31G (d). (b) Optimized structures of compounds at B3LYP/6-31G (d). (c) LUMO plots of compounds at B3LYP/6-31G (d) |
Figure 4. MESP of different compounds under investigation |
[1] | H. Egawa, T. Miyamota, A. Minamida, Y. Nishimura, H. Okada, H. Uno, T. Motosumota, J. Med. Chem. 27 (1984) 1543-1548. |
[2] | K. Kohima, M. Motoyoshi, Japan Kotai Tokyo JP (1988) 01,100,603; Chem. Abstr. 109 (1988) 189591. |
[3] | C.S. Cooper, P.L. Klock, D.T.W. Chu, D.J. Hardy, R.N. Swanson, J.J. Plattner, J. Med. Chem. 35 (1992) 1392-1398. |
[4] | J. Nezval, K. Halocka, Experientia 23 (1967) 1043-1044. |
[5] | C.T. Supuran, A. Scozzafava, Expert Opin. Ther. Patent 14 (2004) 35-53. |
[6] | FDA News Drug Pipeline Alert, March 21, vol. 4 (2006) No. 56. |
[7] | D.A. Burden, N. Oshereroff, Biochim. Biophys. Acta, 1400 (1998) 139-154. |
[8] | K. Tomita, Y. Tsuzuki, K. Shibamori, M. Tshima, F. Kajikawa, Y. Sato, S. Kashimoto, K. Chiba, K. Hino, J. Med. Chem. 45 (2002) 5564-5575. |
[9] | Y. Tsuzuki, K. Tomita, K. Shibamori, Y. Sato, S. Kashimoto, K. Chiba, J. Med. Chem. 47 (2004) 2097-2109. |
[10] | S.K. Srivastava, M. Jaggi, A.T. Singh, A. Madaan, N. Rani, M. Vishnoi, S.K. Agarwal, R. Mukherjee, A.C. Burman, Bioorg. Med. Chem. Lett. 17 (2007) 6660-6664. |
[11] | C. D. Lunsford, A. D. Cale Jr., J. W. Ward, B. V. Franko, H. Jenkins, J. Med. Chem. 7 (1964) 302-310. |
[12] | C.A. Miller, L.M. Long, J. Am. Chem. Soc. 73 (1951) 4895-4898. |
[13] | V.J. Ram, M. Nath, S. Chandra, Indian J. Chem. 33B (1994) 1048-1052. |
[14] | M.M. Dutta, B.N. Goswami, J.C.S. Kataky, Indian J. Chem. Soc. 64 (1987) 195-197. |
[15] | B. Kalluraya, R. Chimbalkar, B. Shivarama Holla, Indian J. Heterocycl. Chem. 5 (1995) 37-40. |
[16] | H.P. Shah, B.R. Shah, J.J. Bhatt, N.C. Desai, P.B. Trivedi, N.K. Undavia, Indian J. Chem. 37B (1998) 180-182. |
[17] | K. Mogilaiah, K.R. Reddy. G.R. Rao, B. Sreenivasulu, Coll. Czech. Chem. Commun. 53 (1988) 1539-1542. |
[18] | (a) Z. Nie, C. Perretta, P. Erickson, S. Margosiak, J. Lu, A. Averill, R. Almassy, S. Chu, Bioorg. Med. Chem. Lett. 18 (2008) 619-623; (b) Cambridge Crystallographic Data Base. |
[19] | K.A. Ahmed, G. Wang, J. Slaton, G. Unger, K. Ahmed, Anti-Cancer Drugs 16 (2005) 1037-1043. |
[20] | S. Tawfic, S. Yu, H. Wang, R. Faust, A. Davis, K. Ahmed, Histl. Histopathol. 16 (2001) 573-582. |
[21] | B. Guerra, O. G. Issinger, Electrophoresis 20 (1999) 391-408. |
[22] | S. Saha, A. Badelli, P. Buckhaults, V.E. Velculescu, C. Roger, B.S. Croix, K.E. Romans, M.A. Choti, C. Lengauer, K.W. Kinzler, B. Vogelstein, Science 294 (2001) 1343-1346. |
[23] | D. C. Seldin, P. Leder, Science 267 (1995) 894-897. |
[24] | M.A. Kelliher, D.C. Seldin, P. Leder, EMBO J. 15 (1996) 5160-5166. |
[25] | E. Ladesman-Bollag, P.L. Channavajhala, R.D. Cardiff, D.C. Seldin, Oncogene 16 (1998) 2965-2974. |
[26] | P. Channavajhala, D.C. Seldin, Oncogene, 21 (2002) 5280-5288. |
[27] | G. Wang, G. Unger, K.A. Ahmed, J.W. Slaton, K. Ahmed, Mol. Cell. Biochem. 274 (2005) 77-84. |
[28] | J.W. Slaton, G.M. Unger, D.T. Sloper, A.T. Davis, K. Ahmed, Cancer Res. 2 (2004) 668-677. |
[29] | G.E. Kellog, S.F. Semus, D.J. Abraham, J. Comput-Aided Mol. Des. 5 (1991) 545-552. |
[30] | A.A. Fadda, M.M. Youssif, H.M. Hassan, Indian J. Chem. 26B (1987) 994-997. |
[31] | A.A. Fadda, A.M. Khalil, M.M. El-Habbal, Pharmazie 46 (1991) 743-744. |
[32] | C.K. Lee, H. Jiang, A.M. Scofield, J. Carbohydr. Chem. 16 (1997) 49-62. |
[33] | H.A. Abdel-Aziza, B.F. Abdel-Wahab, F.A. Badria, Arch. Pharm. 343 (2010) 152-159. |
[34] | B. Hegazi, H.A. Mohamed, K.M. Dawood, F.A. Badria, Chem. Pharm. Bull. 58 (2010) 479-483. |
[35] | E. Scrocco, J. Tomasi, Advances in Quantum Chemistry, Academic Press, New York, Vol. 11 (1978) pp. 115-194. |
[36] | I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, (1976) pp. 5-27. |
[37] | J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam (1996). |
[38] | I. Alkorta, J.J. Perez, Int. J. Quant. Chem. 57 (1996) 123-135. |
[39] | F.J. Luque, M. Orozco, P.K. Bhadane, S.R. Gadre, J. Phys. Chem. 97 (1993) 9380-9384. |
[40] | J. Sponer, P. Hobza, Int. J. Quant. Chem. 57 (1996) 959-970. |
[41] | A.K. Bhattacharjee, R.K. Gupta, D. Ma, J.M. Karle, J. Mol. Recognit. 13 (2000) 213-220. |
[42] | T. Fouad, C. Nielsen, L. Brunn, E.B. Pederson, Sci. J. Az. Med. Fac. (Girls) 19 (1998) 1173-1187. |
[43] | M.J. Frisch, G.W. Trucks, M. Ishida, T. Nakajima, J.B. Foresman, et al., J.A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, (2004). |
[44] | B. Mennucci, E. Cances, J. Tomasi, J. Phys. Chem. B. 101 (1997) 10506-10517. |
[45] | B. Mennucci, J. Tomasi, J. Chem. Phys. 106 (1997) 5151-5158. |
[46] | J. Tomasi, B. Mennucci, E. Cances, J. Mol. Struct. (THEOCHEM) 464 (1999) 211-226. |