[1] | Mian, R. and Paul, S. (2016). Estimation for zero-inflated over-dispersed count data model with missing response. Statistics in Medicine 35, 5603-5624. |
[2] | Minami, M., Cody, C.E. L-. and Verdesoto, M. R-. (2007). Modeling shark bycatch: The zero-inflated negative binomial regression model with smoothing. Fisheries Research 84, 210-221. |
[3] | Mwalili, S. M., Lasaffre, E. and Declerck, D. (2008). The zero-inflated negative binomial regression model with correction for misclassification: an example in caries research. Statistical Methods in Medical Research 17, 123-139. |
[4] | Ibrahim, J. G. (1990). Incomplete Data in Generalized Linear Model. J. Amer. Statist. Assoc. 85, 765–769. |
[5] | Bohning, D., Dietz, E., Schlattmann, P., Mendonca, L., and Kirchner, U. (1999). The Zero-Inflated Poisson Model and the Decayed, Missing and Filled Teeth Index in Dental Epidemiology. Journal of the Royal Statistical Society A 162, 195-209. |
[6] | Paul, S. R. and Plackett, R. L. (1978). Inference sensitivity for Poisson mixtures. Biometrika 65, 591-602. |
[7] | Barnwal, R. K. and Paul, S. R. (1988). Analysis of one-way layout of count data with negative binomial variation. Biometrika 75, 215-22. |
[8] | Paul, S. R. and Banergee, T. (1998). Analysis of Two-Way Layout of Count Data Involving Multiple Counts in Each Cell. J. Amer. Statist. Assoc. 93, 1419-1429. |
[9] | Piegorsch, W. W. (1990). Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics 46, 863-867. |
[10] | Prentice, R. L. (1986). Binary Regression Using an Extended Beta-Binomial Distribution, With Discussion of Correlation Induced by Covariate Measurement Errors. J. Amer. Statist. Assoc. 81, 321-327. |
[11] | Deng, D., and Paul, S. R. (2005). Score Tests for Zero Inflation and Over Dispersion in Generalized Linear Models. Statistica Sinica 15, 257-276. |
[12] | Ridout, M, Demetrio, C. G. B. and Hinde, J. (1998). Models for count data with many zeros. International Biometric Conference, Cape Town. |
[13] | Hinde, J., and Demetrio, C. G. B. (1998). Overdispersion: Models and estimation. Computational Statistics and Data Analysis 27, 151-170. |
[14] | Li, C-S, Lu, J-C, Park, J., Kim, K., Brinkley, P. A. and Peterson, J. P. (1999). Multivariate Zero-Inflated Poisson Models and Their Applications. Technometrics 41, 29-38. |
[15] | Hall, B. H. (2000). A Note on the Bias in Herfindahl-type Measures Based on Count Data. University of California at Berkeley and NBER. |
[16] | Lee, A. H., Wang, K., and Yau, K. K. W. (2001). Analysis of Zero-Inflated Poisson Data Incorporating Extent of Exposure. Biometrical Journal 43, 963-975. |
[17] | Wang, K., Lee, A. H., Yau, K. K. W. and Carrivick, P. J. W. (2003). A bivariate zero-inflated Poisson regression model to analyze occupational injuries. Accident Analysis Prevention 35, 625-629. |
[18] | Lord, D., Washington, S. P., and Ivan, J. N. (2005). Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accident Analysis Prevention 37, 35-46. |
[19] | Jiang, X. and Paul, S. R. (2009). Analysis of covariance of zero-inflated paired count data using a zero-inflated bivariate Poisson regression model. Calcutta Statistical Bulletin (Special Volume) 61, 113-124. |
[20] | Cameron, A. C., and Trivedi, P. K. (2013). Regression analysis of count data. Cambridge University Press. |
[21] | Mullahy, J. (1997). Instrumental-Variable Estimation of Count Data Models: Applications to Models of Cigarette Smoking Behavior. The Review of Economics and Statistics 79, 586-593. |
[22] | Dean, c. b. (1992). Testing for Overdispersion in Poisson and Binomial Regression Models. J. Amer. Statist. Assoc. 87, 451-457. |
[23] | Greene, W. H. (1994). Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models. New York University, Unpublished research paper. |
[24] | Broek, J. V. D. (1995). A Score Test for Zero Inflation in a Poisson Distribution. Biometrics 51, 738-743. |
[25] | Deng, D., and Paul, S. R. (2000). Score Tests for Zero Inflation in Generalized Linear Models. The Canadian Journal of Statistics 87, 451-457. |
[26] | Xie, M., He, B., and Goh, T. N. (2001). Zero-inflated Poisson model in statistical process control. Computational Statistics and Data Analysis 38, 191-201. |
[27] | Paul, S. R., Jiang, X., Rai, S. N. and Balasooriya, U. (2004). Test of treatment effect in pre-drug and post-drug count data with zero-inflation. Statistics in medicine 23, 1541-1554. |
[28] | Williamson, J. M., Lin, H-M, Lyles, R. H., and Hightower, A. W. (2007). Power Calculations for ZIP and ZINB Models. Journal of Data Science 5, 519-534. |
[29] | Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys. J. Amer. Statist. Assoc. 72, 538-543. |
[30] | Little, R. J. A., and Rubin, D. B. (1987, 2002, 2014). Statistical Analysis With Missing Data. New York: Wiley, 2nd ed. |
[31] | Anderson, T. W. and Taylor, J. B. (1976). Strong Consistency of Least Squares Estimates in Normal Linear Regression. The Annals of Statistics 4, 788-790. |
[32] | Geweke, J. (1986). Inference in the Inequality Constrained Normal Linear Regression Model. Journal of Applied Econometrics 1, 117-141. |
[33] | Raftery, A. E., Madigan, D. and Hoeting, J. A. (1997). Bayesian Model Averaging for Linear Regression Models. J. Amer. Statist. Assoc. 92, 179-191. |
[34] | Chen, J., Hubbard, S. and Rubin, Y. (2001). Estimating the hydraulic conductivity at the south oyster site from geophysical tomographic data using Bayesian Techniques based on the normal linear regression model. Water Resources Research 37, 1603-1613. |
[35] | Kelly, B. C. (2007). Some aspects of measurement error in linear regression of astronomical data. The Astrophysical Journal 665, 1489-1506. |
[36] | Zhang, C-H and Huang, J. (2008). The sparsity and bias of the lasso selection in high-dimensional linear regression. The Annals of Statistics 36, 1567-1594. |
[37] | Lipsitz, S. R., and Ibrahim, J. G. (1996). A conditional model for incomplete covariates in parametric regression models. Biometrika 83, 916-922. |
[38] | Ibrahim, J. G., and Lipsitz, S. R. (1996). Parameter Estimation From Incomplete Data in Binomial Regression When the Missing Data Mechanism Is Nonignorable. Biometrics 52, 1071-1078. |
[39] | Ibrahim, J. G., Chen, M.-H., and Lipsitz, S. R. (1999). Monte Carlo EM for Missing Covariates in Parametric Regression Models. Biometrics 55, 591-596. |
[40] | Ibrahim, J. G., Chen, M.-H., and Lipsitz, S. R. (2001). Missing Responses in Generalized Linear Mixed Models When the Missing Data Mechanism Is Nonignorable. Biometrika 88, 551-556. |
[41] | Ibrahim, J. G., Chen, M.-H., and Lipsitz, S. R., and Herring, A. H. (2005). Missing-Data Methods for Generalized Linear Models. J. Amer. Statist. Assoc. 100, 332-346. |
[42] | Sinha, S and Maiti, T (2007). Analysis of matched case-control data in presence of nonignorable missing exposure. Biometrics 64, 106-114. |
[43] | Maiti, T., and Pradhan, V. (2009). Bias Reduction and a Solution for Separation of Logistic Regression with Missing Covariates. Biometrics 65, 1262-1269. |
[44] | Dempster, A. P., Larid, N. M. and Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society B 39, 1-38. |
[45] | Sahu, S. K. and Roberts, G. O. (1999). On convergence of the EM algorithm and the Gibbs sampler. Statistics and Computing 9, 55-64. |
[46] | Casella, G. and George, E. L. (1992). Explaining the Gibbs Sampler. The American Statistician 46, 167-174. |
[47] | Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information. Biometrika 65, 457-87. |
[48] | Lawless, J. F. (1987). Negative Binomial and Mixed Poisson Regression. The Canadian Journal of Statistics 15, 209-225. |