[1] | Ali, S. H., & Keil, R. (Eds.). (2011). Networked disease: emerging infections in the global city. John Wiley & Sons. |
[2] | Ali, S. H., & Keil, R. (2006). Global cities and the spread of infectious disease: the case of severe acute respiratory syndrome (SARS) in Toronto, Canada. Urban Studies, 43(3), 491-509. |
[3] | Andersen, L. M., Harden, S. R., Sugg, M. M., Runkle, J. D., & Lundquist, T. E. (2021). Analyzing the spatial determinants of local Covid-19 transmission in the United States. Science of the Total Environment, 754, 142396. |
[4] | Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115. |
[5] | Anselin, L., & Rey, S. J. (2010). Perspectives on spatial data analysis. In Perspectives on spatial data analysis (pp. 1-20). Springer, Berlin, Heidelberg. |
[6] | Assunção, R.M. (2003), Space varying coefficient models for small area data. Environmetrics, 14: 453-473. https://doi.org/10.1002/env.599 |
[7] | Auler, A. C., Cássaro, F. A. M., Da Silva, V. O., & Pires, L. F. (2020). Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19 in tropical climate: A case study for the most affected Brazilian cities. Science of the Total Environment, 729, 139090. |
[8] | Bååth, R. (2014). Bayesian first aid: A package that implements Bayesian alternatives to the classical*. test functions in R. Proceedings of useR, 2014, 2. |
[9] | Babcock, C., Finley, A. O., Bradford, J. B., Kolka, R., Birdsey, R., & Ryan, M. G. (2015). LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients. Remote Sensing of Environment, 169, 113-127. |
[10] | Bakar, K. S., & Kokic, P. H. I. L. I. P. (2017). Bayesian Gaussian models for point referenced spatial and spatio-temporal data. J Stat Res, 51(1), 17-40. |
[11] | Bakar, K. S., Kokic, P., & Jin, H. (2015). A spatiodynamic model for assessing frost risk in south-eastern Australia. Journal of the Royal Statistical Society: Series C (Applied Statistics), 64(5), 755-778. |
[12] | Bakar, K.S., Jin, H. Spatio-temporal quantitative links between climatic extremes and population flows: a case study in the Murray-Darling Basin, Australia. Climatic Change 148, 139–153 (2018). https://doi.org/10.1007/s10584-018-2182-6 |
[13] | Bakka, H., Rue, H., Fuglstad, G. A., Riebler, A., Bolin, D., Illian, J., ... & Lindgren, F. (2018). Spatial modeling with R-INLA: A review. Wiley Interdisciplinary Reviews: Computational Statistics, 10(6), e1443. |
[14] | Banerjee, A., Dhillon, I., Ghosh, J., & Merugu, S. (2004, July). An information theoretic analysis of maximum likelihood mixture estimation for exponential families. In Proceedings of the twenty-first international conference on Machine learning (p. 8). |
[15] | Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2003). Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC. |
[16] | Banerjee, S., Gelfand, A. E., Finley, A. O., & Sang, H. (2008). Gaussian predictive process models for large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(4), 825-848. |
[17] | Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Spatial Point Patterns. |
[18] | Basilevsky, Alexander (2005). Applied Matrix Algebra in the Statistical Sciences. Dover. pp. 160–176 |
[19] | Belsley, D. A. (1980). On the efficient computation of the nonlinear full-information maximum-likelihood estimator. Journal of Econometrics, 14(2), 203-225. |
[20] | Bivand, R., Sha, Z., Osland, L., & Thorsen, I. S. (2017). A comparison of estimation methods for multilevel models of spatially structured data. Spatial Statistics, 21, 440-459. |
[21] | Bluhm, R., & Pinkovskiy, M. (2020). The Spread of COVID-19 and the BCG Vaccine: Evidence from a Natural Experiment in Germany. Available at SSRN 3670635. |
[22] | Bluhm, R., & Pinkovskiy, M. (2020). The Spread of COVID-19 and the BCG Vaccine: Evidence from a Natural Experiment in Germany. Available at SSRN 3670635. |
[23] | Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J. S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in ecology & evolution, 24(3), 127-135. |
[24] | Briz-Redón, Á., & Serrano-Aroca, Á. (2020). A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain. Science of the total environment, 728, 138811. |
[25] | Brunsdon, C., Fotheringham, A. S., & Charlton, M. (2002). Geographically weighted summary statistics—a framework for localised exploratory data analysis. Computers, Environment and Urban Systems, 26(6), 501-524. |
[26] | Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical analysis, 28(4), 281-298. |
[27] | Brunsdon, C., Fotheringham, S., & Charlton, M. (1998). Geographically weighted regression. Journal of the Royal Statistical Society: Series D (The Statistician), 47(3), 431-443. |
[28] | Candido, D. D. S., Watts, A., Abade, L., Kraemer, M. U., Pybus, O. G., Croda, J., ... & Faria, N. R. (2020). Routes for COVID-19 importation in Brazil. Journal of Travel Medicine, 27(3), taaa042. |
[29] | Candido, D. S., Claro, I. M., De Jesus, J. G., Souza, W. M., Moreira, F. R., Dellicour, S., ... & Faria, N. R. (2020). Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science, 369(6508), 1255-1260. |
[30] | Carozzi, F. (2020). Urban density and COVID-19. Available at SSRN 3643204. |
[31] | Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of statistical software, 76(1). |
[32] | Casetti, E. (1972). Generating models by the expansion method: applications to geographical research. Geographical analysis, 4(1), 81-91. |
[33] | Chen, F., Liu, Y., Liu, Q., & Li, X. (2014). Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. International Journal of Remote Sensing, 35(9), 3074-3093. |
[34] | Chen, S., Yang, J., Yang, W., Wang, C., & Bärnighausen, T. (2020). COVID-19 control in China during mass population movements at New Year. The Lancet, 395(10226), 764-766. |
[35] | Connolly, C., Keil, R., & Ali, S. H. (2021). Extended urbanisation and the spatialities of infectious disease: Demographic change, infrastructure and governance. Urban studies, 58(2), 245-263. |
[36] | Crimp, S., Bakar, K. S., Kokic, P., Jin, H., Nicholls, N., & Howden, M. (2015). Bayesian space–time model to analyse frost risk for agriculture in Southeast Australia. International Journal of Climatology, 35(8), 2092-2108. |
[37] | Danon, L., Brooks-Pollock, E., Bailey, M., & Keeling, M. (2020). A spatial model of CoVID-19 transmission in England and Wales: early spread and peak timing. MedRxiv. |
[38] | Das, A., Ghosh, S., Das, K., Basu, T., Das, M., & Dutta, I. (2020). Modeling the effect of area deprivation on COVID-19 incidences: a study of Chennai megacity, India. Public Health, 185, 266-269. |
[39] | Fan, J., & Zhang, W. (2008). Statistical methods with varying coefficient models. Statistics and its Interface, 1(1), 179. |
[40] | Fanelli, D., & Piazza, F. (2020). Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons & Fractals, 134, 109761. |
[41] | Farr, T. G., & Kobrick, M. (2000). Shuttle Radar Topography Mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81(48), 583-585. |
[42] | Farzanegan, M. R., Feizi, M., & Gholipour, H. F. (2021). Globalization and the outbreak of COVID-19: An empirical analysis. Journal of Risk and Financial Management, 14(3), 105. |
[43] | Finley AO, Sang H, Banerjee S, Gelfand AE. Improving the performance of predictive process modeling for large datasets. Comput Stat Data Anal. 2009 Jun 15;53(8):2873-2884. doi: 10.1016/j.csda.2008.09.008. PMID: 20016667; PMCID: PMC2743161. |
[44] | Finley, A. O., Banerjee, S., & Finley, M. A. O. (2015). Package ‘spBayes’. |
[45] | Fortaleza, C. M. C. B., Guimarães, R. B., Catão, R. D. C., Ferreira, C. P., Berg de Almeida, G., Nogueira Vilches, T., & Pugliesi, E. (2021). The use of health geography modeling to understand early dispersion of COVID-19 in São Paulo, Brazil. PloS one, 16(1), e0245051. |
[46] | Fotheringham, A. S., & Brunsdon, C. (1999). Local forms of spatial analysis. Geographical analysis, 31(4), 340-358. |
[47] | Fotheringham, A. S., Yang, W., & Kang, W. (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247-1265. |
[48] | Frieler, K., Lange, S., Piontek, F., Reyer, C. P., Schewe, J., Warszawski, L., ... & Yamagata, Y. (2017). Assessing the impacts of 1.5 C global warming–simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 10(12), 4321-4345. |
[49] | Fuller, W. A. (1976). Introduction to Statistical Time Series, New York, John Wiley and Sons. |
[50] | Gamerman, D., Moreira, A. R., & Rue, H. (2003). Space-varying regression models: specifications and simulation. Computational Statistics & Data Analysis, 42(3), 513-533. |
[51] | Gelfand, A. E., Kim, H. J., Sirmans, C. F., & Banerjee, S. (2003). Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical Association, 98(462), 387-396. |
[52] | Gelfand, A. E., Kim, H. J., Sirmans, C. F., & Banerjee, S. (2003). Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical Association, 98(462), 387-396. |
[53] | Gelman, A. (2005). Analysis of variance—why it is more important than ever. The annals of statistics, 33(1), 1-53. |
[54] | Gelman, A., Lee, D., & Guo, J. (2015). Stan: A probabilistic programming language for Bayesian inference and optimization. Journal of Educational and Behavioral Statistics, 40(5), 530-543. |
[55] | Gire, S. K., Goba, A., Andersen, K. G., Sealfon, R. S., Park, D. J., Kanneh, L., ... & Sabeti, P. C. (2014). Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. science, 345(6202), 1369-1372. |
[56] | Giuliani, D., Dickson, M. M., Espa, G., & Santi, F. (2020). Modelling and predicting the spatio-temporal spread of COVID-19 in Italy. BMC infectious diseases, 20(1), 1-10. |
[57] | Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Chris & Harris, Paul. (2015). GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models. Journal of statistical software. 63. 10.18637/jss.v063.i17. |
[58] | Griffith, D. A. (2003). Spatial filtering. In Spatial Autocorrelation and Spatial Filtering (pp. 91-130). Springer, Berlin, Heidelberg. |
[59] | Griffith, D. A. (2008). Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environment and Planning A, 40(11), 2751-2769. |
[60] | Guan, W. J., Liang, W. H., Zhao, Y., Liang, H. R., Chen, Z. S., Li, Y. M., ... & He, J. X. (2020). Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. European Respiratory Journal, 55(5). |
[61] | Guliyev, H. (2020). Determining the spatial effects of COVID-19 using the spatial panel data model. Spatial statistics, 38, 100443. |
[62] | Gupta, A., & Rawlings, J. B. (2014). Comparison of parameter estimation methods in stochastic chemical kinetic models: examples in systems biology. AIChE Journal, 60(4), 1253-1268. |
[63] | Gupta, S., Raghuwanshi, G. S., & Chanda, A. (2020). Effect of weather on COVID-19 spread in the US: A prediction model for India in 2020. Science of the total environment, 728, 138860. |
[64] | Gygli, S., Haelg, F., Potrafke, N., & Sturm, J. E. (2019). The KOF globalisation index–revisited. The Review of International Organizations, 14(3), 543-574. |
[65] | Hastie, T., & Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society: Series B (Methodological), 55(4), 757-779. |
[66] | Hayes, A. F., & Cai, L. (2007). Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behavior research methods, 39(4), 709-722. |
[67] | Helbich, M., & Griffith, D. A. (2016). Spatially varying coefficient models in real estate: Eigenvector spatial filtering and alternative approaches. Computers, Environment and Urban Systems, 57, 1-11. |
[68] | Horn, R. A., & Johnson, C. R. (2013). Matrix analysis, second addition. Cambridge university press. |
[69] | Horn, Roger A., & Johnson, Charles R. (1985). Matrix Analysis. Cambridge University Press |
[70] | Hosmer, D. W., & Lemeshow S. (2000). Applied logistic regression. |
[71] | Hosmer, D. W., & Hjort, N. L. (2002). Goodness‐of‐fit processes for logistic regression: simulation results. Statistics in medicine, 21(18), 2723-2738. |
[72] | Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). |
[73] | Jacob Benjamin DD. Chadee (2011) Adjusting second moment bias in eigenspace using Bayesian empirical estimators, Dirichlet tessellations and Worldview 1 data for predicting Culex quinquefasciatus in Trinidad Journal of Geographic Information Systems (14)2: 244-274. |
[74] | Jacob B.G, Mendoza D.M, Ponce M., Caliskan S., Moradi M, Gotuzzo E, Griffith D.A., Novak R.J. (2014) Pseudo R2Probablity Measures, Durbin Watson Diagnostic Statistics and Einstein Summations for Deriving Unbiased Frequentistic Inferences and Geoparameterizing Non-Zero First-Order Lag Autocorvariate Error in Regressed Multi-Drug Resistant Tuberculosis Time Series Estimators American Journal of Applied Mathematics and Statistics 2(5):252-30. |
[75] | Jacob Benjamin and Robert J. Novak (2017) Gauging queryable iterative estimator uncorrelatedness from incompatibilistic propagational Poissionian noise in eigen-normalized non-negativity constraints employing analogs of the Pythagorean theorem and parallelogram laws in sub-meter resolution pseudo-Euclidean space in C++ for semi-parametrically prognosticating synergistic semi-logarithmic Aedes aegypti non-ordinate axis-scaled landscape weightage covariances of episodical sylvatic yellow fever case distributions for an agro-irrigated riceland village ecosystem in Gulu, Uganda. Journal of Advanced Mathematics: 7(3): 1-448. |
[76] | Jacob Benjamin G., Fiorella Krapp, Mario Ponce, Nanhua Zhang, Semiha Caliskan, Daniel A. Griffith, Eduardo Gotuzzo and Robert J. Novak (2013), A Bayesian Poisson specification with a conditionally autoregressive prior and a residual Moran’s coefficient minimization criterion for quantitating leptokurtic distributions in regression-based multi-drug resistant tuberculosis treatment protocols, Journal of Public Health and Epidemiology. 5(3): 122-143. |
[77] | Jacob, B. G., & Novak, R. J. (2014). Integrating a Trimble Recon X 400 MHz Intel PXA255 Xscale CPU® Mobile Field Data Collection System Using Differentially Corrected Global Positioning System Technology and a Real-Time Bidirectional Actionable Platform within an ArcGIS Cyberenvironment for Implementing Mosquito Control. Advances in Remote Sensing, 3(03), 141. |
[78] | Jacob, B. G., Chadee, D. D., & Novak, R. J. (2011). Adjusting second moment bias in eigenspace using Bayesian empirical estimators, Dirichlet tessellations and Worldview I data for predicting Culex quinquefasciatus habitats in Trinidad. Journal of Geographic Information System, 3(01), 18. |
[79] | Jacob, B. G., De Alwiss, R., Caliskan, S., Griffith, D. A., Gunawardena, D., & Novak, R. J. (2013). A random-effects regression specification using a local intercept term and a global mean for forecasting malarial prevalence. Am. J. Comput. Appl. Math, 3, 49-67. |
[80] | Jacob, B. G., Griffith, D. A., Caliskan, S., Gunawardena, D., & Novak, R. J. (2013). Heuristically optimizing logarithmically transformed mean zero Gaussian vectors in PROC ARIMA using a random deviation from an intercept term and a normal frequency distributed Autoregressive Integrated Moving Average Time Series for forecasting malarial. International Journal of Geographic Information System, 1(1), 1-143. |
[81] | Jacob, B. G., Krapp, F., Ponce, M., Gotuzzo, E., Griffith, D. A., & Novak, R. J. (2010). Accounting for autocorrelation in multi-drug resistant tuberculosis predictors using a set of parsimonious orthogonal eigenvectors aggregated in geographic space. Geospatial health, 4(2), 201-217. |
[82] | Jacqmin-Gadda, H., Sibillot, S., Proust, C., Molina, J. M., & Thiébaut, R. (2007). Robustness of the linear mixed model to misspecified error distribution. Computational Statistics & Data Analysis, 51(10), 5142-5154. |
[83] | Jones, J. P., & Casetti, E. (Eds.). (1992). Applications of the expansion method. London: Routledge |
[84] | J. Roy. Statist. Soc. Ser. B 54 (1992) 657–699. |
[85] | Kaiser, M. S., & Cressie, N. (1997). Modeling Poisson variables with positive spatial dependence. Statistics & Probability Letters, 35(4), 423-432. |
[86] | Kamel Boulos, M. N., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. International journal of health geographics, 19(1), 1-12. |
[87] | Kang, L., Ma, S., Chen, M., Yang, J., Wang, Y., Li, R., ... & Liu, Z. (2020). Impact on mental health and perceptions of psychological care among medical and nursing staff in Wuhan during the 2019 novel coronavirus disease outbreak: A cross-sectional study. Brain, behavior, and immunity, 87, 11-17. |
[88] | Kasim, M. F., Bott, A. F. A., Tzeferacos, P., Lamb, D. Q., Gregori, G., & Vinko, S. M. (2019). Retrieving fields from proton radiography without source profiles. Physical Review E, 100(3), 033208. |
[89] | Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.2307/2291091 |
[90] | Khalatbari-Soltani, S., Cumming, R. C., Delpierre, C., & Kelly-Irving, M. (2020). Importance of collecting data on socioeconomic determinants from the early stage of the COVID-19 outbreak onwards. J Epidemiol Community Health, 74(8), 620-623. |
[91] | Kuebart, A., & Stabler, M. (2020). Infectious diseases as socio-spatial processes: The COVID-19 outbreak in Germany. Tijdschrift voor economische en sociale geografie, 111(3), 482-496. |
[92] | Lange, N., & Ryan, L. (1989). Assessing normality in random effects models. The Annals of Statistics, 624-642. |
[93] | Leong, Y. Y., & Yue, J. C. (2017). A modification to geographically weighted regression. International journal of health geographics, 16(1), 1-18. |
[94] | Leung, K., Wu, J. T., Liu, D., & Leung, G. M. (2020). First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. The Lancet, 395(10233), 1382-1393. |
[95] | Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., ... & Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England journal of medicine. |
[96] | Likassa, H. T., Xain, W., Tang, X., & Gobebo, G. (2021). Predictive models on COVID 19: What Africans should do?. Infectious Disease Modelling, 6, 302-312. |
[97] | Lindgren, F., & Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal of statistical software, 63, 1-25. |
[98] | Liu, Z., Bing, X., & Zhi, X. (2020). Novel Coronavirus Pneumonia Emergency Response Epidemiology Team [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi, 41(2), 145-51. |
[99] | Long, J. S., & Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. The American Statistician, 54(3), 217-224. |
[100] | Longley, P. A., & Tobón, C. (2004). Spatial dependence and heterogeneity in patterns of hardship: an intra-urban analysis. Annals of the Association of American Geographers, 94(3), 503-519. |
[101] | Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, J., ... & Wagenmakers, E. J. (2019). JASP: Graphical statistical software for common statistical designs. Journal of Statistical Software, 88, 1-17. |
[102] | Lu, B., Brunsdon, C., Charlton, M., & Harris, P. (2017). Geographically weighted regression with parameter-specific distance metrics. International Journal of Geographical Information Science, 31(5), 982-998. |
[103] | Lu, B., Brunsdon, C., Charlton, M., & Harris, P. (2017). Geographically weighted regression with parameter-specific distance metrics. International Journal of Geographical Information Science, 31(5), 982-998. |
[104] | Luo, Y., & Jiao, H. (2018). Using the Stan program for Bayesian item response theory. Educational and psychological measurement, 78(3), 384-408. |
[105] | Ma, Y., Zhao, Y., Liu, J., He, X., Wang, B., Fu, S., ... & Luo, B. (2020). Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Science of the total environment, 724, 138226. |
[106] | Maas, C. J., & Hox, J. J. (2004). Robustness issues in multilevel regression analysis. Statistica Neerlandica, 58(2), 127-137. |
[107] | Matthews, S. A., & Yang, T. C. (2012). Mapping the results of local statistics: Using geographically weighted regression. Demographic research, 26, 151. |
[108] | McCulloch, C. E., & Neuhaus, J. M. (2011). Misspecifying the shape of a random effects distribution: why getting it wrong may not matter. Statistical science, 26(3), 388-402. |
[109] | McCulloch, C. E., & Neuhaus, J. M. (2011). Prediction of random effects in linear and generalized linear models under model misspecification. Biometrics, 67(1), 270-279. |
[110] | Meyer, C. D. (2000). Matrix analysis and applied linear algebra (Vol. 71). Siam. |
[111] | Moberg J., Toni Panaou, Benjamin G. Jacob (2018). A least square fitting technique, a nontrivial diagonal matrix and a zero-inner product for interpolating disproportionately weighted landscape regression estimates for identifying vulnerable populations to chlamydia in Miami-Dade County, Florida. International Journal of Geographic Information Systems 5(5): 21-29. |
[112] | Mollalo, A., Rivera, K. M., & Vahedi, B. (2020). Artificial neural network modeling of novel coronavirus (COVID-19) incidence rates across the continental United States. International journal of environmental research and public health, 17(12), 4204. |
[113] | Mollalo, A., Vahedi, B., & Rivera, K. M. (2020). GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Science of the total environment, 728, 138884. |
[114] | Murakami, D., Yoshida, T., Seya, H., Griffith, D. A., & Yamagata, Y. (2017). A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68-89. |
[115] | Nakaya, T. (2001). Local spatial interaction modelling based on the geographically weighted regression approach. GeoJournal, 53(4), 347-358. |
[116] | The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) - China, 2020. China CDC Wkly. 2020 Feb 21; 2(8): 113-122. PMID: 34594836; PMCID: PMC8392929. |
[117] | Pek, J., Wong, A. and Wong, O. (2017) Confidence Intervals for the Mean of Non-Normal Distribution: Transform or Not to Transform. Open Journal of Statistics, 7, 405-421. doi: 10.4236/ojs.2017.73029. |
[118] | Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4), 967-1012. |
[119] | R Core Team, R. (2018). R: A language and environment for statistical computing. |
[120] | Raftery, A. E. (1995). Bayesian model selection in social research. Sociological methodology, 111-163. |
[121] | Ribeiro, S. P., DÁttilo, W., Barbosa, D. S., Coura-Vital, W., Chagas, I. A. D., Dias, C. P., ... & Reis, A. B. (2020). Worldwide COVID-19 spreading explained: traveling numbers as a primary driver for the pandemic. Anais da Academia Brasileira de Ciências, 92. |
[122] | Robert, C. P., & Casella, G. (2004). The metropolis—hastings algorithm. In Monte Carlo statistical methods (pp. 267-320). Springer, New York, NY. |
[123] | Robert, C. P., Casella, G., & Casella, G. (1999). Monte Carlo statistical methods (Vol. 2). New York: Springer. |
[124] | Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the royal statistical society: Series b (statistical methodology), 71(2), 319-392. |
[125] | Ruiz Estrada, M. A., & Koutronas, E. (2020). The networks infection contagious diseases positioning system (NICDP-System): The case of wuhan-COVID-19. Available at SSRN 3548413. |
[126] | Sargan, J. D., & Bhargava, A. (1983). Testing residuals from least squares regression for being generated by the Gaussian random walk. Econometrica: Journal of the Econometric Society, 153-174. |
[127] | Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6:461-464 |
[128] | Scripting and toolbox approaches to spatial analysis in a GIS context. In Spatial Analytical Perspectives on GIS (pp. 39-52). Routledge. |
[129] | Shi, P., Dong, Y., Yan, H., Zhao, C., Li, X., Liu, W., ... & Xi, S. (2020). Impact of temperature on the dynamics of the COVID-19 outbreak in China. Science of the total environment, 728, 138890. |
[130] | Sirkeci, I., & Yucesahin, M. M. (2020). Coronavirus and migration: analysis of human mobility and the spread of Covid-19. Migration Letters, 17(2), 379-398. |
[131] | Sirkeci, I., & Yucesahin, M. M. (2020). Coronavirus and migration: analysis of human mobility and the spread of Covid-19. Migration Letters, 17(2), 379-398. |
[132] | Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J. F., ... & Vanhems, P. (2011). High-resolution measurements of face-to-face contact patterns in a primary school. PloS one, 6(8), e23176. |
[133] | Taghizadeh-Hesary, F., & Akbari, H. (2020). The powerful immune system against powerful COVID-19: A hypothesis. Medical hypotheses, 140, 109762. |
[134] | Tarwater, P. M., & Martin, C. F. (2001). Effects of population density on the spread of disease. Complexity, 6(6), 29-36. |
[135] | Tatem, A. J., Rogers, D. J., & Hay, S. I. (2006). Global transport networks and infectious disease spread. Advances in parasitology, 62, 293-343. |
[136] | Teh, C. Y., Wu, T. Y., & Juan, J. C. (2014). Potential use of rice starch in coagulation–flocculation process of agro-industrial wastewater: treatment performance and flocs characterization. Ecological engineering, 71, 509-519. |
[137] | Uspensky, J. V. (1937). Introduction to mathematical probability. McGraw-Hill. |
[138] | Ver Hoef, J. M., & Cressie, N. (1993). Multivariable spatial prediction. Mathematical Geology, 25(2), 219-240. |
[139] | Verbeke, G., & Molenberghs, G. (2013). The gradient function as an exploratory goodness-of-fit assessment of the random-effects distribution in mixed models. Biostatistics, 14(3), 477-490. |
[140] | Walker, S. G. (2007). Sampling the Dirichlet mixture model with slices. Communications in Statistics—Simulation and Computation®, 36(1), 45-54. |
[141] | Wang, M., Jiang, A., Gong, L., Lu, L., Guo, W., Li, C., ... & Li, H. (2020). Temperature significantly change COVID-19 transmission in 429 cities. Medrxiv. |
[142] | Wang, Q., Dong, W., Yang, K., Ren, Z., Huang, D., Zhang, P., & Wang, J. (2021). Temporal and spatial analysis of COVID-19 transmission in China and its influencing factors. International Journal of Infectious Diseases, 105, 675-685. |
[143] | Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method. Biometrika, 61(3), 439-447. |
[144] | Wheeler, D. C., & Calder, C. A. (2007). An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. Journal of Geographical Systems, 9(2), 145-166. |
[145] | Wheeler, D. C., & Calder, C. A. (2007). An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. Journal of Geographical Systems, 9(2), 145-166. |
[146] | Wheeler, D. C., & Waller, L. A. (2009). Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests. Journal of Geographical Systems, 11(1), 1-22. |
[147] | Wheeler, D. C., & Waller, L. A. (2009). Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests. Journal of Geographical Systems, 11(1), 1-22. |
[148] | Wolf, L. J., Oshan, T. M., & Fotheringham, A. S. (2018). Single and multiscale models of process spatial heterogeneity. Geographical Analysis, 50(3), 223-246. |
[149] | Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., & Dominici, F. (2020). Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Science advances, 6(45), eabd4049. |
[150] | Xie, J., & Zhu, Y. (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of the Total Environment, 724, 138201. |
[151] | Yang, Y., Yang, J., Li, S., Zhang, X., Zhu, D., Liu, Z., ... & Xiao, K. (2011). Spatial regression analysis on influence factors of maize lodging stress. Transactions of the Chinese Society of Agricultural Engineering, 27(6), 244-249. |
[152] | Zimmermann, K. F., Karabulut, G., Bilgin, M. H., & Doker, A. C. (2020). Inter-country distancing, globalisation and the coronavirus pandemic. The World Economy, 43(6), 1484-1498. |