[1] | Srivastava, A. B. L. (1959). Effect of Non-normality on the Power of the Analysis of Variance Test. Biometrika, 46, No.1/2 114-122. |
[2] | Box, G.E.P. and Watson, G.S. (1962). Robustness to non-normality of regression Tests. Biometrika, 49, Issue 1/2, 93-106. DOI: 10.1093/biomet/49.1-2.93. |
[3] | Tiku, M.L. (1971). Power Function of the F-Test under Non-Normal Situations. Journal of American Statistical Association, 66(336), 913-916. |
[4] | Kanji, G.K. (1976). Effect of non-normality on the power in analysis of variance: A simulation study. International Journal of Mathematical Education in Science and Technology, 7(2),155-160. DOI: 10.1080/002739760070204. |
[5] | Mukhtar, M. Ali and Subhash, C. Sharma, Volume 71, Issues 1–2, Robustness to nonnormality of regression F-tests, Journal of Econometrics, March–April 1996, Pages 175–205. |
[6] | MAcGIllivray, H.L and BAlanda K.P. (1988), The relationship between skewness and Kurtosis, Australian Jounal of Statistics, 30:319-337. |
[7] | Khan, A. and Rayner, G.D. (2001). ANOVA Procedures with Quantile-function Error Distributions. Journal of Applied Mathematics and Decision Sciences, 5(2), 1-9. |
[8] | Khan, A. and Rayner, G.D. (2003a). Robustness to non-normality of common tests for many –sample location problem. Journal of Applied Mathematics and Decision Sciences, 7(4), 187-207. |
[9] | Rasch, D. and Gulard, V. (2004). The robustness of parametric Statistical Methods. Psychology Science, 46(2), 175-208. |
[10] | Serlin, Ronald C.; Harwell, Michael R. (2004). More Powerful Tests of Predictor Subsets in Regression Analysis under Nonnormality. Psychological Methods, Vol 9(4), Dec 2004, 492-509. doi: 10.1037/1082-989X.9.4.492. |
[11] | Yanagihara, H. (2007). Conditions for robustness to Nonnormality on Test Statistics in a GMANOVA Model. J.Japan. Statist., Soc.37 (1), 135-155. |
[12] | Mortaza Jamshidian, Robert I. Jennrich and Wei Liu (2007). A study of partial F tests for multiple linear regression models. Computational Statistics & Data Analysis 51 (2007) 6269 – 6284. |
[13] | Schmider, Emanuel; Ziegler, Matthias; Danay, Erik; Beyer, Luzi; Bühner, Markus (2010), Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, Vol 6(4), 147-151. doi: 10.1027/1614-2241/a000016. |
[14] | Khan, A. and Hossain, S.S. (2010), Many Sample location Test with Quantile Function Error Distributions: An almost robust Test, J. Stat. &Appl. Vol.5, No.2, 139-160. |
[15] | Jahan, S. and Khan, A. (2012), Power of t-test for simple Linear regression Model with Nonnormal Error Distribution: A Quantile Function Distribution Approach, Journal of Scientific Research, Volume 4 No. 3, Page 609-622. |
[16] | MacGillivray, H. L. and Cannon, W. H. (Preprint, 2002). Generalizations of the g-and-h distributions and their uses. |
[17] | Neter, John, Wsserman, W. and Kutner, Michael H. (1983). Applied Linear Regression Models, Publisher: Richard D. Irwin, INC. |
[18] | Smyth, G. (2001). [Webdocument], http://www.statsci.org/data/general/wolfrive.html, [Accessed 04/02/07]. |