[1] | Lord, F. M., 1952, A theory of test scores, Psychometric Monograph No. 7. |
[2] | Lord, F. M., and Novick, M. R., 1968, Statistical theories of mental test scores, Addison-Wesley, Reading, MA. |
[3] | Lord, F. M., 1980, Applications of item response theory to practical testing problems, Lawrence Erlbaum Associates, Hillsdale, New Jersey. |
[4] | Smith, A. F. M., and Roberts, G. O., 1993, Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods, Journal of the Royal Statistical Society, Series B, 55, 3–23. |
[5] | Tierney, L., 1994, Markov chains for exploring posterior distributions, The Annals of Statistics, 22, 1701–1762. |
[6] | Carlin, B. P., and Louis, T. A., 2000, Bayes and empirical Bayes methods for data analysis (2nd ed.), Chapman & Hall, London. |
[7] | Chib, S., and Greenberg, E., 1995, Understanding the Metropolis-Hastings algorithm, The American Statistician, 49(4), 327–335. |
[8] | Gelfand, A. E., and Smith, A. F. M., 1990, Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398–409. |
[9] | Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B., 2003, Bayesian data analysis, Chapman & Hall/CRC, Boca Raton. |
[10] | Albert, J. H., 1992, Bayesian estimation of normal ogive item response curves using Gibbs sampling, Journal of Educational Statistics, 17, 251–269. |
[11] | Geman, S., and Geman, D., 1984, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Analysis and Machine Intelligence, 6, 721–741. |
[12] | Tanner, M. A., and Wong, W. H., 1987, The calculation of posterior distribution by data augmentation (with discussion), Journal of the American Statistical Association, 82, 528–550. |
[13] | Sheng, Y., and Headrick, T. C., 2007, An algorithm for implementing Gibbs sampling for 2PNO IRT models, Journal of Modern Applied Statistical Methods, 6, 341–349. |
[14] | Sahu, S. K., 2002, Bayesian estimation and model choice in item response models, Journal of Statistical Computation and Simulation, 72, 217–232. |
[15] | Johnson, V. E., and Albert, J. H., 1999, Ordinal data modeling, Springer-Verlag, New York. |
[16] | Béguin, A. A., and Glas, C. A. W., 2001, MCMC estimation and some model-fit analysis of multidimensional IRT models, Psychometrika, 66, 541–562. |
[17] | Glas, C. W., and Meijer, R. R., 2003, A Bayesian approach to person fit analysis in item response theory models, Applied Psychological Measurement, 27, 217–233. |
[18] | Sheng, Y., 2008, Markov chain Monte Carlo estimation of normal ogive IRT models in MATLAB, Journal of Statistical Software, 25(8), 1–15. |
[19] | Sheng, Y., 2010, A sensitivity analysis of Gibbs sampling for 3PNO IRT models: Effects of prior specifications on parameter estimates, Behaviormetrika, 37(2), 87–110. |
[20] | Sheng, Y., 2013, An empirical investigation of Bayesian hierarchical modeling with unidimensional IRT models, Behaviormetrika, 40(1), 19–40. |
[21] | Williams, C. L., and Locke, A., 2003, Hyperprior imprecision in hierarchical Bayesian modeling of cluster Bernoulli observations, InterStat: Statistics on the Internet. URL: http://interstat.statjournals.net/YEAR/2003/abstracts/0310001.php. |
[22] | Brainerd, W., 2003, The importance of Fortran in the 21st century, Journal of Modern Statistical Methods, 2, 14–15. |
[23] | Patz, R. J., and Junker, B. W., 1999, A straightforward approach to Markov chain Monte Carlo methods for item response models, Journal of Educational and Behavioral Statistics, 24, 146–178. |
[24] | Ripley, B. D., 1987, Stochastic simulation, Wiley, New York. |
[25] | Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M., 1990, Illustration of Bayesian inference in normal data models using Gibbs sampling, Journal of the American Statistical Association, 85, 315–331. |
[26] | Hoijtink, H., and Molenaar, I. W., 1997, A multidimensional item response model: Constrained latent class analysis using posterior predictive checks, Psychometrika, 62, 171–189. |