[1] | Srivastava, B., 2007, Mock theta functions and Theta functions, New Zealand J. Math. 36, 287-294. |
[2] | Srivastava, B., 2012, A study of Bilateral New Mock theta functions, American Journal of Mathematics and Statistics, 2(4), 64-69. |
[3] | Watson, G.N., 1936, The final problem: an account of the mock theta functions, Jour. London Math. Soc., 11, 55-80. |
[4] | Agarwal, R.P., 1969, Certain basic hypergeometric identities associated with mock theta functions, Quart. Jour. Math., 20, 121-128. |
[5] | Andrews, G.E., 1981, Ramanujan’s lost notebook – I : Partial (-) functions, Adv. Math., 41, 137-170. |
[6] | Andrews, G.E. and Hickerson, D., 1991, Ramanujan’s lost notebook - III : The sixth order mock theta functions, Adv. Math., 89, 60-105. |
[7] | Choi, Y.S., 1999, Tenth order mock theta functions in Ramanujan’s lost notebook, Invent. Math., 136, 497-596. |
[8] | Gordon, B. and Mc Intosh, R.J., 2000, Some eighth order mock theta functions, Jour. Lodon Math. Soc., 62, 321-335. |
[9] | Bringmann, K., Ono, K., The f(q) mock theta functions conjecture and partition ranks, Inven. Math., 165, 243. |
[10] | Bringmann, K., Ono, K., 2007, Lifting elliptic cups forms to mass form with an application to partitions, Proc. Math. Acad. Sci. (USA), 104, 3725. |
[11] | Srivastava, A.K., 1997, On Partial sums of mock theta functions of order three, Proc. Indian Aca. Sci. (Math. Sci.), 107 (1), 1-12. |
[12] | Denis, R.Y., Singh, S.N. and Singh, S.P., 2006, On certain relation connecting mock theta functions, Italian Jour. Pure & Appl. Math., 19, 55-60. |
[13] | Srivastava, B., 2005, Ramanujan’s mock theta functions, Math. J. Okayama Univ. 47(1), 163-174. |
[14] | Roselin Antony and Araya, A., 2013, On partial sums of Mock theta functions of order 2, International Journal of Advanced Computer and Mathematical Sciences, 4(1), 586-603. |
[15] | Roselin Antony and Fiseha, H., 2012, On certain relations connecting mock theta functions of order 10, International Journal of Engineering and Mathematical Sciences, 2(1), 83-101. |
[16] | Roselin Antony, 2013, Some relations on sixth order mock theta functions, International Journal of Mathematics Research, 5(1), 65-70 |
[17] | Ramanujan, S., 1957, Ramanujan’s Notebooks (Vols. I and II), Tata Institute of Fundamental Research, Bombay. |
[18] | Berndt, B.C., 1991, Ramanujan’s Notebooks - Part III, Springer, New York. |
[19] | Euler, L., 1748, Introductio in Analysin Infinitorum, Marcum – Michaelem Bousuet, Lausannae. |
[20] | Andrews, G.E., 1981, Ramanujan’s lost notebook – I : Partial (-) functions, Adv. Math., 41, 137-170. |
[21] | Rogers, L.J., 1894, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc., 25, 318-343. |
[22] | Ramanujan, S., 1919, Proof of certain identities in combinatory analysis, Proc. Camb. Philos. Soc., 19, 214-216. |
[23] | Hahn, H., 2003, Septic Analogues of the Rogers-Ramanujan functions, Acta Arith., 110, 38-399. |
[24] | Hahn, H., 2004, Einstein series, analogues of the Rogers-Ramanujan functions and partitions, Ph. D. thesis, University of Illinois at Urbana-champaign. |
[25] | Jackson, F.H., 1928, Examples of a generalization of Euler’s transformation for power series, Messenger of Math., 57, 169-187. |
[26] | Slater, L.J., 1952, Further identities of the Rogers – Ramanujan type, Proc. London Math. Soc., 54(2), 147-167. |
[27] | Gollnitz, H., 1967,Partitionen mit Differenzenbedingunger, J. Reine Angew Math., 225, 154-190. |
[28] | Gordon, B., 1965, Some continued fractions of Rogers-Ramanujan type, Duke Math. J., 32, 741- 448. |
[29] | Bailey, W.N., 1947, Some identities in combinatory analysis, Proc. London Math. Soc., 49, 421-435. |
[30] | Ali, A., 2011, On Eight order Mock theta functions, Italian J. Pure and Applied Mathematics, 28, 327-332. |
[31] | Pathak, M., and Srivastava,P., 2009, Certain relations for Mock theta functions of order eight, Commun. Korean Math. Soc., 24(4), 629-640. |