[1] | Agarwal, R.P., (1953). A propos d’une note de M. Pierre Humbert, C.R. Acad. Sci. Paris, 236, 2031-2032. |
[2] | Bagley, R.L. and Torvik, P.J., (1984). On the appearance of the fractional derivative in the behavior of real materials, Journal of Applied Mechanics, 51, 294-298. |
[3] | Blair, G.W.S., (1974). Psychorheology: Links between the past and the present, Journal of Texture Studies, 5, 3-12. |
[4] | Chak, A. M., (1956). A class of polynomials and generalization of stirling numbers, Duke J. Math., 23, 45-55. |
[5] | Chandel, R.C.S., (1973). A new class of polynomials, Indian J. Math., 15(1), 41-49. |
[6] | Chandel, R.C.S., (1974). A further note on the class of polynomials , Indian J. Math., 16(1), 39-48. |
[7] | Chatterjea, S. K., (1964). On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova, 34, 180-190. |
[8] | Caputo, M. and Mainardi, F., (1971). Linear models of dissipation in anelastic solids, Rivista del Nuovo Cimento, Ser. II, 1, 161-198. |
[9] | Dunn, Peter K., (2003). Understanding statistics using computer demonstrations. Journal of Computers in Mathematics and Science Teaching, 22 (3). pp. 261-281. ISSN 0731-9258. |
[10] | Dzherbashyan, M.M., (1966). Integral Transforms and Representations of Functions in the Complex Plane, Nauka, Moscow, (in Russian). |
[11] | Erd´elyi, A., Magnus,W., Oberhettinger, F. and Tricomi, F. G. (1955). Higher Transcendental Functions,Vol. 3, McGraw - Hill, New York, Toronto and London. |
[12] | E. Hille and J.D. Tamarkin, (1930). On the theory of linear integral equations, Annals of Mathematics, 31, 479-528. |
[13] | Gorenflo, R., Kilbas, A.A. and Rogosin, S.V., (1998). On the generalized Mittag-Leffler type function, Integral Transforms and Special Functions, 7(3-4), 215-224. |
[14] | Gorenflo, R. and Luchko, Yu. F., (1997). Operational methods for solving generalized Abel equations of second kind, Integral Transforms and Special Functions, 5, 47-58. |
[15] | Gorenflo, R., Luchko, Yu. F. and Rogosin, S.V., (1997). Mittag-Leffler type functions, notes on growth properties and distribution of zeros, Preprint No. A04-97, Freie University of Berlin, Serie A Mathematik, Berlin. |
[16] | Gorenflo, R. and Mainardi, F., (1994). Fractional oscillations and Mittag-Leffler functions, Preprint No. 1-14/96, Free University of Berlin, Berlin. |
[17] | Gorenflo, R. and Mainardi, F., (1996). The Mittag-Leffler function in the Riemann-Liouville fractional calculus, In: A.A. Kilbas (ed) Boundary Value Problems, Special Functions and Fractional Calculus, Minsk, pp. 215-225. |
[18] | Gorenflo, R. and Mainardi, F., (1997). Fractional calculus: integral and differential equations of fractional order, In: Fractals and Fractional Calculus in Continuum Mechanics (eds. A. Carpinteri and F. Mainardi), Springer-Verlag, Wien, pp.223-276. |
[19] | Gorenflo, R. and Rutman, R., On ultraslow and intermediate processes, In: P. Rusev, I. Dimovski, V. Kiryakova (eds) Transform Methods and Special Functions, Sofia, 1994, 61-81, Science Culture Technology Publ., Singapore, 1995, pp.171-183. |
[20] | Gorenflo, R. and Vessella, S., (1991). Abel Integral Equations: Analysis and Applications, Lecture Notes in Mathematics 1461, Springer-Verlag, Berlin. |
[21] | Gould, H. W. and Hopper, A. T., (1962). Operational formulas connected with two generalizations of Hermite polynomials, Duck Math. J., 29, 51-63. |
[22] | Haubold, H.J. and Mathai, A.M., (2000). The fractional kinetic equation and thermonuclear functions, Astrophysics and Space Science, 273, 53-63. |
[23] | Haubold, H.J., Mathai, A.M. and Saxena, R.K., (2007). Solution of fractional reaction-diffusion equations in terms of the H-function, Bulletin of the Astronomical Society, India, 35, 681-689. |
[24] | Humbert, P., (1953). Quelques resultants retifs a la fonction de Mittag-Leffler, C.R. Acad. Sci. Paris, 236, 1467-1468. |
[25] | Humbert, P. and Agarwal, R.P., (1953). Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations, Bull. Sci. Math., (Ser.II), 77, 180-185. |
[26] | Hilfer, R. (ed.), (2000). Applications of Fractional Calculus in Physics, World Scientific, Singapore. |
[27] | Joshi, C. M. and Prajapat, M. L., (1975). The operator , and a generalization of certain classical polynomials, Kyungpook Math. J., 15, 191-199. |
[28] | Kilbas, A.A. and Saigo, M., (1995). On solutions of integral equations of Abel-Volterra type, Differential and Integral Equations, 8, 993-1011. |
[29] | Kilbas, A.A., Saigo, M. and Saxena, R.K., (2004). Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms and Special Functions, 15, 31-49. |
[30] | Kilbas, A.A., Saigo, M. and Saxena, R.K., (2002). Solution of Volterra integro-differential equations with gen-eralized Mittag-Leffler function in the kernels, Journal of Integral Equations and Applications, 14(4), 377-386. |
[31] | Kiryakova,V., (2008a). Some special functions related to fractional calculus and fractional non-integer order control systems and equations, Facta Universitatis Ser. Automatic Control and Robotics, Univ. Nis. |
[32] | Kiryakova,V.S., (5-7 November 2008b). Special functions of fractional calculus: recent list, results, applications, 3rd IFC Workshop, FDA 08: Fractional Differentiation and its Applications, Cankaya University, Ankara, Turkey, pp.1-23. |
[33] | Lang, K.R., (1999a). Astrophysical Formulae, Vol. 1: Radiation, Gas Processes and High-energy Astrophysics, 3rd edition, revised edition, Springer-Verlag, New York. |
[34] | Lang, K.R., (1999b). Astrophysical Formulae, Vol. 2: Space, Time, Matter and Cosmology, Springer-Verlag, New York. |
[35] | Luchko, Yu. F. and Gorenflo,R., (1999). An operational method for solving fractional differential equations with a Caputo derivative, Acta Mathematica Vietnam, 24, 207-234. |
[36] | Luchko, Yu. F. and Srivastava, H.M., (1995). The exact solution of certain differential equations of fractional order by using fractional calculus, Computational Mathematics and Applications, 29, 73-85. |
[37] | Mathai, A.M., Saxena, R.K. and Haubold, H.J., (2006). A certain class of Laplace transforms with application in reaction and reaction-diffusion equations, Astrophysics and Space Science, 305, 283-288. |
[38] | Mittag-Leffler, G.M., (1903). Une generalisation de l’integrale de Laplace-Abel, C.R. Acad. Sci. Paris (Ser. II), 137, 537-539. |
[39] | Mittag-Leffler, G.M., (1905). Sur la representation analytiqie d’une fonction monogene (cinquieme note), Acta Mathematica, 29, 101-181. |
[40] | Mittal, H. B., (1971). A generalization of Laguerre polynomial, Publ. Math. Debrecen, 18, 53-58. |
[41] | Mittal, H. B., (1971a). Operational representations for the generalized Laguerre polynomial, Glasnik Mat.Ser III, 26(6), 45-53. |
[42] | Mittal, H. B., (1977). Bilinear and Bilateral generating relations, American J. Math., 99, 23-45. |
[43] | Patil, K. R. and Thakare, N. K., (1975). Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, 1-10. |
[44] | Prajapati, J.C. and Ajudia, N.K., (Accepted On: 27.08.2012). On New Sequence of Functions and Their MATLAB Computation, International Journal of Physical, Chemical & Mathematical Sciences, Vol. 1; No. 2: ISSN: 2278-683X. |
[45] | Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993). Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, pp. 21-22. |
[46] | Saxena, R.K. and Kalla, S.L., (2008). On the solution of certain kinetic equations, Applied Mathematics and Computation, 199, 504-511. |
[47] | Saxena, R.K., Kalla, S.L. and Kiryakova, V.S., (2003). Relations connecting multi-index Mittag-Leffler functions and Riemann-Liouville fractional calculus, Algebras, Groups and Geometries, 20, 363-385. |
[48] | Saxena, R.K., Mathai, A.M. and Haubold, H.J., (2002). On fractional kinetic equations, Astrophysics and Space Science, 282, 281-287. |
[49] | Saxena, R.K. Mathai, A.M. and Haubold, H.J., (2004). On generalized fractional kinetic equations, Physica A, 344, 657-664. |
[50] | Saxena, R.K., Mathai, A.M. and Haubold, H.J., (2004a). Unified fractional kinetic equations and a fractional diffusion equation, Astrophysics and Space Science, 290, 241-245. |
[51] | Saxena, R.K., Mathai, A.M. and Haubold, H.J., (2004b). Astrophysical thermonuclear functions for Boltzmann-Gibbs statistics and Tsallis statistics, Physica A, 344, 649-656. |
[52] | Saxena, R.K., Mathai, A.M. and Haubold, H.J., (2006). Fractional reaction-diffusion equations, Astrophysics and Space Science, 305, 289-296. |
[53] | Saxena, R.K., Ram, C. and Kalla, S.L., (2002). Applications of generalized H-function in bivariate distributions, Rev. Acad. Canar., 14(1-2), 111-120. |
[54] | Saxena, R.K. and Saigo, M., (2005). Certain properties of fractional calculus operators associated with generalized Wright function, Fractional Calculus and Applied Analysis, 6, 141-154. |
[55] | Shampine,L. F., Robert Ketzscher,(March 2005). Using AD to solve BVPs in MATLAB Journal ACM Transactions on Mathematical Software, Volume 31 Issue 1, ACM New York, NY, USA. |
[56] | Shukla, A. K. and Prajapati J. C., (2007). On some properties of a class of Polynomials suggested by Mittal, Proyecciones J. Math., 26(2), 145-156. |
[57] | Shrivastava, P. N., (1974). Some operational formulas and generalized generating function, The Math. Education, 8, 19-22. |
[58] | Singh, R. P., (1968). On generalized Truesdell polynomials, Rivista de Mathematica, 8, 345-353. |
[59] | Srivastava, H. M. and Singhal, J. P., (1971). A class of polynomials defined by generalized |
[60] | Rodrigues formula, Ann. Mat. Pura Appl., 90(4), 75-85. |
[61] | Srivastava, H.M. and Saxena, R.K., (2001). Operators of fractional integration and their applications, Applied Mathematics and Computation, 118, 1-52. |
[62] | Srivastava, A. N. and Singh, S. N., (1979). Some generating relations connected with a function |
[63] | defined by a Generalized Rodrigues formula, Indian J. Pure Appl. Math., 10(10), 1312-1317. |
[64] | Stephen, M. Watt, (2006). Making Computer Algebra More Symbolic (Invited), pp. 43-49, Proc. Transgressive Computing: A conference in honor or Jean Della Dora, (TC 2006), April 24-26 2006, Granada Spain. |
[65] | Wiman, A., (1905). Über den Fundamental satz in der Theorie der Funcktionen, , Acta Mathematica, 29, 191-201. |