[1] | Aczél, and Daróczy: On Measures of Information and Their Characterizations.Maths.In Sci. And Eng.,Vol 115. Academic Press, New York, 1975 |
[2] | Adler, Konheim, and Mc Andrew: “Topological Entropy”. Transactions of AMS, Vol. 114, No. 2, pp. 309-319 |
[3] | Atanassov: “Intuitionistic Fuzzy Sets”. Fuzzy Set and Systems (FSS), Vol. 20, pp. 87-96, 1986 |
[4] | Atanassov: Intuitionistic Fuzzy Sets: Theory and Applications.Physica-Verlag, Heidelberg, 1999 |
[5] | Atanassov: “New operators defined over Intuitionistic Fuzzy Sets”. FSS.Vol. 61, pp. 137-142, 1994 |
[6] | Burbea, and Rao: “Entropy Differential Metric, Distance and Divergence Measures in Probabilistic Spaces:A Unified Approach”.J. Multi. Analysis, 12, pp. 575-596, 1982 |
[7] | Burbea, and Rao: “On the Convexity of some divergence measures based on Entropy functions”. IEEE Transactions on Information Theory, IT-28, pp. 489-495, 1982 |
[8] | Burillo and Bustince: “Entropy on Intuitionistic Fuzzy Sets, and interval-valued fuzzy sets”. FSS, Vol. 78: 305-316, 1996 |
[9] | Chakrabarty: “Shannon Entropy: Axiomatic Characterization and Application”. Intern.Journal of Maths.and Math. Sci., Vol. 17, pp. 2847-2854, 2005 |
[10] | Dubois and Prade: Fundamentals of Fuzzy Sets. Series: The Handbooks of Fuzzy Sets. Vol.7. Springer-Kluwer, 2000 |
[11] | Dumitrescu, D.: “Entropy of a fuzzy process”. FSS.Vol. 55, pp. 169-177, 1993 |
[12] | Dumitrescu, D.: “Fuzzy measures and the entropy of fuzzy partitions”.J. Math. Anal.Appl. Vol. 175, pp. 359-373, 1993 |
[13] | Dumitrescu, D.: “Entropy of a fuzzy dynamical system”, FSS, Vol. 70, pp. 45-57, 1995 |
[14] | Dumitrescu, D.; Haloiu, E.; and Dumitrescu, A.: “Generators of fuzzy dynamical systems”. FSS, Vol. 113, pp. 447-452, 2000 |
[15] | Fan, and Xie: “Distance measure and induced fuzzy entropy”. FSS, Vol. 104, No.2, pp. 305-314, 1999 |
[16] | Fisher: Collected Papers of R. A. Fisher.In five Volumes. University of Adelaide, 1971-1974 |
[17] | Garmendia, L.: “The Evolution of the Concept of Fuzzy Measure”. Studies in Computational Intelligence, Vol. 5, pp. 186-200, 2005 |
[18] | Garrido, A., and Postolica, V.: Modern Optimization. Matrix-Rom Ed. Bucharest, 2011 |
[19] | Hartley: "A More Symmetrical Fourier Analysis Applied to Transmission Problems“. Proceedings of the IRE, Vol. 30, pp. 144–150, 1942 |
[20] | Hartley: "A New System of Logarithmic Units", Proceedingsof the IRE, Vol. 43, No. 1, 1955 |
[21] | Havrda, and Charvát: “Quantification method of classification processes”. Kybernetica, Vol. 3, pp. 30-35, 1967 |
[22] | Hung, and Yang: “Fuzzy Entropy on Intuitionistic Fuzzy Sets”.Int. J. of Intell.Systems.Vol. 21, pp. 443-451, 2006 |
[23] | Hung: “A note on entropy of intuitionistic fuzzy sets”. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems.Vol. 11, Issue 5, pp. 627-633, 2003 |
[24] | Iosifescu, M.: Finite Markov Processes and their Applications.Wiley Series in Probability and Mathematical Statistics.Dover, 2007 |
[25] | Iosifescu, and Grigorescu:Dependence with Complete Connections and its Applications. Cambridge University Press, Cambridge, 1990 |
[26] | Iosifescu, and Theodorescu: “On the entropy of chains with complete connections”.C. Ac. Romane 11, pp. 821–824, 1961 |
[27] | Iosifescu, M.: “Sampling Entropy for Random Homogeneous Systems with Complete Connections”.Ann. Math. Stat., Vol. 36, pp. 1433-1436, 1965 |
[28] | Jaynes, E. T.: “Information Theory and Statistical Mechanics”, in Physical Review.Vol. 106, No. 4, pp. 620-630, 1957 |
[29] | Jaynes, E. T.: “Prior Probabilities”, in IEEE Transactions on Systems Science and Cybernetics, SSC-4, p. 227, 1968 |
[30] | Jaynes, E. T.: “Information Theory and StatisticalMechanics”, in Physical Review.Vol. 106, No. 4, pp. 620-630, 1957 |
[31] | Jaynes, E. T.: “Monkeys, Kangaroos and N”, in Maximum Entropy, and Bayesian Methods in AppliedStatistics.Cambridge University Press, 1986 |
[32] | Jaynes, E. T.: Probability Theory: The Logic of Science.CUP, Cambridge University Press, 2003 |
[33] | Jeffreys: Theory of probability.Oxford University Press, 1948 |
[34] | Kerridge: “Inaccuracy and Inference”. J. Royal Statistical Society, Ser. B, 23, pp. 184-194, 1961 |
[35] | Kolmogorov, A.N.: “New Metric Invariant of Transitive Dynamical Systems and Endomorphisms of Lebesgue Spaces”. Doklady of Russian Academy of Sciences (RAS), Vol. 119, No. 5, pp. 861-864, 1958 |
[36] | Kolmogorov, A.N.: “Entropy per unit time as a metric invariant of automorphism”. Dokladyof Russian Academy of Sciences (RAS). Vol. 119, No. 5, pp. 861-864, 1958 |
[37] | Kullback, S.: Information Theory and Statistics, Wiley, 1959 |
[38] | Kullback, S., and Leibler, R.: “On Information and Sufficiency”. Ann. Math. Statist., 22, pp. 79-86, 1951 |
[39] | Lambert: “Entropy is Simple, Qualitative Journal of Chemical Ed., Vol. 79, pp. 1241-1246, 2002[it is also disposable online]. |
[40] | Luca, and Termini: “A definition of non-probabilistic entropy in the setting of Fuzzy Set theory”.Paper at Information and Control, Vol. 20, pp. 301-312, 1972 |
[41] | Marcus, S.: Words and Languages Everywhere. Polimetrica. Bucharest, 2007 |
[42] | Nyquist: "Certain factors affecting telegraph speed“. Bell System Technical Journal, Vol. 3, pp. 324-346, 1924 |
[43] | Preda, V., and Balcau, C.: “Homogeneous stationary multiple Markov Chains with maximum I-T Entropy”. Rev. RoumaineMaths. Pures Appl., Vol. 53, 1, pp. 55-61, 2008 |
[44] | Preda, V., and Balcau, C.: Entropy Optimization with Applications. Editura Academiei Romane. Bucharest, 2011 |
[45] | Prigogine: Etude Thermodynamique des PhenomenesIrreversibles.Dunod, Paris, 1947 |
[46] | Rényi, A.: “On measures of information and entropy”. Proc. of the 4th Berkeley Symposium on Mathematics, Statistics, and Probability, pp. 547-561, 1961. |
[47] | Shannon, C.E.: “A Mathematical Theory of Communication”, Bell System Techn. J., pp. 379-423 and 623-656, 1948 |
[48] | Sibson: “Information Ratius”.Z. Wahrsverw. Geb., Vol. 14, pp. 149-160, 1969 |
[49] | Simonyi, G.: “Graph Entropy: A Survey”. DIMACS Series in Discrete Mathematics and Theor.Computer Science |
[50] | Singh: “On Sharma-Taneja´s entropy of Type (α,β)”, at Kybernetika, vol. 9, Nr. 6, download |
[51] | Smarandache F.:A Unifying Field inLogics. Neutrosophy: Neutrosophic Probability, Set, and Logic,AmericanResearch Press, Rehoboth, 1999 |
[52] | Szmidt, and Kacprzyk: “Entropy for Intuitionistic Fuzzy Sets”.FSS, Vol. 118, pp. 467-477, 2001 |
[53] | Szmidt, and Kacprzyk: “Distances between Intuitionistic Fuzzy Sets”. FSS, Vol. 118, pp. 467-477, 2001 |
[54] | Taneja:“On axiomatic characterization of entropy of type (α,β)”. Appl. of Maths.Vol. 22, Issue 6, pp. 409-417, 1977 |
[55] | Taneja:Generalized Information Measures and Their Applications.On-line book, 2001 |
[56] | Titchener, Nicolescu, Staiger, Gulliver, and Speidel: “Deterministic Complexity and Entropy”. FundamentaInformaticae, Vol. 64, Issue 1-4, Contagious Creativity. In Honor of the 80th Birthday of Prof. Solomon Marcus, 2004 |
[57] | Titchener: “A measure of information”. Proc. Data Compression Conference, pp. 353-362, Snowbird, UT, 2000 |
[58] | Titchener: “A deterministic theory of Complexity, Information and Entropy”. IEEE Information Theory Workshop. San Diego, CA, 1998 |
[59] | Tribus, and Irvine: “Energy and Information”.Scientific American 225, No. 3: 179-188, 1971 |
[60] | Tsallis, Mendes, and Plastino: “The role of constraints within generalized non-extensive statistics”. Physica, Vol. 261, pp. 534-554, 1998 |
[61] | Volkenstein: Entropy and Information. Series: Progress in Mathematical Physics, Vol. 57, BirkhäuserVerlag, 2009 |
[62] | Wang, and Klir: Fuzzy Measure Theory. Plenum Press, New York, 1992 |
[63] | Wang, and Klir: Generalized Measure Theory. SpringerVerlag, Berlin-New York, 2008 |
[64] | Yager: “On the measure of fuzziness and negation”. Int. J. Gral.Systems, Vol.5, pp. 189-200, 1979 |
[65] | You, and Gao: “Maximum entropy membership functions for discrete fuzzy variables”. Information Sciences, 179, Issue No. 14, pp. 2353-2361, 2009 |
[66] | Yu, and Hu: “Entropies of fuzzy indiscernibility relation, and their operations”.Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems.Vol. 12, Issue 5, pp. 575-589, 2005 |