| [1] | Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res. 2020; 99(7): 769-774. |
| [2] | Hung M, Voss MW, Rosales MN, et al. Application of machine learning for diagnostic prediction of root caries. Gerodontology. 2019; 36(4): 395-404. |
| [3] | Park JH, Kim HJ, Lee JH, et al. Deep learning-based detection of periodontal bone loss using convolutional neural networks. J Clin Periodontol. 2021; 48(5): 649-657. |
| [4] | Khanagar SB, Al-Ehaideb A, Maganur PC, et al. Developments, application, and performance of artificial intelligence in dentistry: A systematic review. J Dent Sci. 2021; 16(1): 508-522. |
| [5] | Tandon D, Rajawat J, Bansal M. Present and future of artificial intelligence in dentistry. J Oral Biol Craniofac Res. 2020; 10(4): 391-396. |
| [6] | Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int. 2020; 51(3): 248-257. |
| [7] | Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018; 77: 106-111. |
| [8] | Krois J, Ekert T, Meinhold L, et al. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep. 2019; 9(1): 8495. |
| [9] | Proffit WR, Fields HW, Larson BE, Sarver DM. Contemporary Orthodontics. 6th ed. Philadelphia: Elsevier; 2019. |
| [10] | American Association of Orthodontists. Economics of Orthodontics Survey Report. St. Louis: AAO; 2023. |
| [11] | American Association of Orthodontists. Clinical Practice Guidelines for Orthodontics and Dentofacial Orthopedics. St. Louis: AAO; 2022. |
| [12] | Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J Orofac Orthop. 2020; 81(1): 52-68. |
| [13] | Patcas R, Bernini DAJ, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int J Oral Maxillofac Surg. 2019; 48(1): 77-83. |
| [14] | Hwang HW, Park JH, Moon JH, et al. Automated identification of cephalometric landmarks: Part 2-Might it be better than human? Angle Orthod. 2020; 90(1): 69-76. |
| [15] | Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 2020; 99(3): 249-256. |
| [16] | Nishimoto S, Sotsuka Y, Kawai K, Ishise H, Kakibuchi M. Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J Craniofac Surg. 2019; 30(1): 91-95. |
| [17] | Park JH, Hwang HW, Moon JH, et al. Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019; 89(6): 903-909. |
| [18] | Silva TP, Hughes MM, Menezes LDS, de Melo MFB, de Freitas PHL, Takeshita WM. Artificial intelligence-based cephalometric landmark annotation and measurements according to Arnett’s analysis: Can we trust a bot to do that? Dentomaxillofac Radiol. 2022; 51(6): 20200548. |
| [19] | Durão AR, Pittayapat P, Rockenbach MI, et al. Validity of 2D lateral cephalometry in orthodontics: a systematic review. Prog Orthod. 2013; 14: 31. |
| [20] | Baccetti T, Franchi L, McNamara JA Jr. The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semin Orthod. 2005; 11(3): 119-129. |
| [21] | Fishman LS. Radiographic evaluation of skeletal maturation: a clinically oriented method based on hand-wrist films. Angle Orthod. 1982; 52(2): 88-112. |
| [22] | Mohammad-Rahimi H, Nadimi M, Ghalyanchi-Langeroudi M, Taheri M, Ghafouri-Fard S. Machine learning and orthodontics: current trends and the future opportunities. A scoping review. Am J Orthod Dentofacial Orthop. 2021; 160(2): 170-192. |
| [23] | Kök H, Acilar AM, İzgi MS. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog Orthod. 2019; 20(1): 41. |
| [24] | Amasya H, Yildirim D, Aydogan T, Kemaloglu N, Orhan K. Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models. Dentomaxillofac Radiol. 2020; 49(5): 20190441. |
| [25] | Seo H, Hwang J, Jeong T, Shin J. Comparison of deep learning models for cervical vertebral maturation stage classification on lateral cephalometric radiographs. J Clin Med. 2021; 10(16): 3591. |
| [26] | Ronsivalle V, Venezia P, Bennici O, et al. Accuracy of digital workflow for placing orthodontic miniscrews using generic and dedicated surgical guides: A systematic review. J Dent. 2024; 141: 104832. |
| [27] | Kazimierczak N, Kazimierczak W, Serafin Z, et al. AI in orthodontics: revolutionizing diagnostics and treatment planning—a comprehensive review. J Clin Med. 2024; 13(2): 344. |
| [28] | Wang H, Minnema J, Batenburg KJ, Forouzanfar T, Hu FJ, Wu G. Multiclass CBCT image segmentation for orthodontics with deep learning. J Dent Res. 2021; 100(9): 943-949. |
| [29] | Leonardi R, Ronsivalle V, Lagravere MO, Barbato E, Isola G, Lo Giudice A. Three-dimensional assessment of the spheno-occipital synchondrosis and clivus after tooth-borne and bone-borne rapid maxillary expansion. Angle Orthod. 2021; 91(6): 822-829. |
| [30] | Subramanian AK, Chen Y, Almalki A, Sivamurthy G, Kafle D. Cephalometric analysis in orthodontics using artificial intelligence—a comprehensive review. Biomed Res Int. 2022; 2022: 1880113. |
| [31] | Bichu YM, Hansa I, Bichu AY, Premjani P, Flores-Mir C, Vaid NR. Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod. 2021; 22(1): 18. |
| [32] | Strunga M, Urban R, Surovková J, Thurzo A. Artificial intelligence systems assisting in the assessment of the course and retention of orthodontic treatment. Healthcare. 2023; 11(5): 683. |
| [33] | Liu J, Chen Y, Li S, Zhao Z, Wu Z. Machine learning in orthodontics: challenges and perspectives. Adv Clin Exp Med. 2021; 30(10): 1065-1074. |
| [34] | Monill-González A, Rovira-Calatayud L, d’Oliveira NG, Ustrell-Torrent JM. Artificial intelligence in orthodontics: Where are we now? A scoping review. Orthod Craniofac Res. 2021; 24(Suppl 2): 6-15. |
| [35] | Taraji S, Atici SF, Viana G, et al. Novel machine learning model for facial analysis and its application in video-imaging for assessing facial palsy. J Dent. 2024; 142: 104875. |
| [36] | Albalawi F, Alamoud KA. Trends and application of artificial intelligence technology in orthodontic diagnosis and treatment planning—a review. Appl Sci. 2022; 12(22): 11864. |
| [37] | Khanagar SB, Alfadley A, Alfouzan K, et al. Developments and performance of artificial intelligence models designed for application in endodontics: A systematic review. Diagnostics. 2023; 13(3): 414. |
| [38] | Prados-Privado M, García Villalón J, Blázquez Torres A, Martínez-Cantó C, Ivorra C. A convolutional neural network for automatic tooth numbering in panoramic images. Biomed Res Int. 2021; 2021: 3625386. |
| [39] | Arsiwala-Scheppach LT, Chaurasia A, Müller A, Krois J, Schwendicke F. Machine learning in dentistry: A scoping review. J Clin Med. 2023; 12(3): 937. |
| [40] | Ahmed N, Abbasi MS, Zuberi F, et al. Artificial intelligence techniques: Analysis, application, and outcome in dentistry—a systematic review. Biomed Res Int. 2021; 2021: 9751564. |
| [41] | Caruso S, Caruso S, Pellegrino M, et al. Machine learning and orthodontics: A scoping review. J World Fed Orthod. 2022; 11(6): 226-233. |
| [42] | Ezhov M, Gusarev M, Golitsyna M, et al. Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep. 2021; 11(1): 15006. |
| [43] | Yassir YA, Salman AR, Nabbat SA. The accuracy of artificial intelligence models in hands-wrist bone age assessment: A systematic review and meta-analysis. Orthod Craniofac Res. 2024; 27(1): 23-35. |