[1] | Mahmaljy H, Yelamanchili VS, Singhal M. Dilated cardiomyopathy. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 Apr 7. |
[2] | Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, et al. Dilated cardiomyopathy. Nat Rev Dis Primers. 2019 May 9; 5(1): 32. |
[3] | Brownrigg JR, Leo V, Rose J, et al. Epidemiology of cardiomyopathies and incident heart failure in a population-based cohort study. Heart. 2021. |
[4] | Codd MB, Sugrue DD, Gersh BJ, Melton LJ. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation. 1989; 80: 564–72. |
[5] | Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: The complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013; 10(9): 531–47. |
[6] | Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, et al. The molecular role of immune cells in dilated cardiomyopathy. Medicina (Kaunas). 2023 Jul 5; 59(7): 1246. |
[7] | Caforio AL, Keeling PJ, Zachara E, Mestroni L, Camerini F, Mann JM, et al. Evidence from family studies for autoimmunity in dilated cardiomyopathy. Lancet. 1994 Sep 17; 344 (8925): 773–7. |
[8] | Sozzi FB, Gherbesi E, Faggiano A, Gnan E, Maruccio A, Schiavone M, et al. Viral myocarditis: Classification, diagnosis, and clinical implications. Front Cardiovasc Med. 2022 Jun 20; 9: 908663. |
[9] | Gebhard JR, Perry CM, Harkins S, Lane T, Mena I, Asensio VC, et al. Coxsackievirus B3-induced myocarditis: Perforin exacerbates disease, but plays no detectable role in virus clearance. Am J Pathol. 1998 Aug; 153(2): 417–28. |
[10] | Verdonschot J, Hazebroek M, Merken J, Debing Y, Dennert R, Brunner-La Rocca HP, et al. Relevance of cardiac parvovirus B19 in myocarditis and dilated cardiomyopathy: Review of the literature. Eur J Heart Fail. 2016 Dec; 18(12): 1430–41. |
[11] | Reddy S, Eliassen E, Krueger GR, Das BB. Human herpesvirus 6-induced inflammatory cardiomyopathy in immunocompetent children. Ann Pediatr Cardiol. 2017 Sep-Dec; 10(3): 259–68. |
[12] | Krych S, Jęczmyk A, Jurkiewicz M, Żurek M, Jekiełek M, Kowalczyk P, et al. Viral myocarditis as a factor leading to the development of heart failure symptoms, including the role of parvovirus B19 infection-Systematic review. Int J Mol Sci. 2024; 25(15): 8127. |
[13] | Orphanou N, Papatheodorou E, Anastasakis A. Dilated cardiomyopathy in the era of precision medicine: Latest concepts and developments. Heart Fail Rev. 2022 Jul; 27(4): 1173–91. |
[14] | Gkouziouta G, Karavolias J, Fekos A, Katsianis P, Kourkoveli PH, Cokkinos S, et al. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Eur Heart J. 2013 Aug; 34 (suppl_1): P3861. |
[15] | Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol. 2012; 42: 102–11. |
[16] | Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The role of viral infections in the onset of autoimmune diseases. Viruses. 2023 Mar 18; 15(3): 782. |
[17] | Shim SH, Kim DS, Cho W, Nam JH. Coxsackievirus B3 regulates T-cell infiltration into the heart by lymphocyte function-associated antigen-1 activation via the cAMP/Rap1 axis. J Gen Virol. 2014 Sep; 95(Pt 9): 2010–18. |
[18] | Kishore J, Kishore D. Clinical impact and pathogenic mechanisms of human parvovirus B19: A multiorgan disease inflictor incognito. Indian J Med Res. 2018 Oct; 148(4): 373–84. |
[19] | Yanagawa B, Spiller OB, Choy J, Luo H, Cheung P, Zhang HM, et al. Coxsackievirus B3-associated myocardial pathology and viral load reduced by recombinant soluble human decay-accelerating factor in mice. Lab Invest. 2003; 83(1): 75–85. |
[20] | Jahns R, Boivin V, Hein L, Triebel S, Angermann CE, Ertl G, et al. Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest. 2004 May; 113(10): 1419–29. |
[21] | Patel PA, Hernandez AF. Targeting anti-beta-1-adrenergic receptor antibodies for dilated cardiomyopathy. Eur J Heart Fail. 2013 Jul; 15(7): 724–9. |
[22] | Zhang J, Xu H, Li Z, Feng F, Wang S, Li Y. Frequency of autoantibodies and their associated clinical characteristics and outcomes in patients with dilated cardiomyopathy: A systematic review and meta-analysis. Autoimmun Rev. 2025; 24(4): 103755. |
[23] | Hu C, Wong FS, Wen L. B cell-directed therapy for autoimmune diseases. Clin Exp Immunol. 2009 Aug; 157(2): 181–90. |
[24] | Nindl V, Maier R, Ratering D, De Giuli R, Züst R, Thiel V, et al. Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol. 2012 Sep; 42(9): 2311–21. |
[25] | Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. Immunobiology: The immune system in health and disease. 5th ed. New York: Garland Science; 2001. |
[26] | Liang KP, Kremers HM, Crowson CS, Snyder MR, Therneau TM, Roger VL, et al. Autoantibodies and the risk of cardiovascular events. J Rheumatol. 2009 Nov; 36(11): 2462–9. |
[27] | Aristizábal B, González Á. Innate immune system. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et al., editors. Autoimmunity: From bench to bedside. Bogotá: El Rosario University Press; 2013. |
[28] | Goulopoulou S, McCarthy CG, Webb RC. Toll-like receptors in the vascular system: Sensing the dangers within. Pharmacol Rev. 2016 Jan; 68(1): 142–67. |
[29] | Frantz S, Falcao-Pires I, Balligand JL, Bauersachs J, Brutsaert D, Ciccarelli M, et al. The innate immune system in chronic cardiomyopathy: A European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. Eur J Heart Fail. 2018 Mar; 20(3): 445–59. |
[30] | Högye M, Mándi Y, Csanády M, Sepp R, Buzás K. Comparison of circulating levels of interleukin-6 and tumor necrosis factor-alpha in hypertrophic cardiomyopathy and in idiopathic dilated cardiomyopathy. Am J Cardiol. 2004 Jul 15; 94(2): 249–51. |
[31] | Frangogiannis NG. The extracellular matrix in ischemic and nonischemic heart failure. Circ Res. 2019 Jun 21; 125(1): 117–46. |
[32] | Coffman JA. Enteroviruses activate cellular innate immune responses prior to adaptive immunity and tropism contributes to severe viral pathogenesis. Microorganisms. 2025 Apr 10; 13(4): 870. |
[33] | Jain P, Jain A, Khan DN, Kumar M. Human parvovirus B19 associated dilated cardiomyopathy. BMJ Case Rep. 2013 Aug 5; 2013:bcr2013010410. |
[34] | Xu S, Wu Z, Chen H. Construction and evaluation of immune-related diagnostic model in patients with heart failure caused by idiopathic dilated cardiomyopathy. BMC Cardiovasc Disord. 2024; 24: 92. |
[35] | Perugino CA, Kaneko N, Maehara T, Mattoo H, Kers J, Allard-Chamard H, et al. CD4+ and CD8+ cytotoxic T lymphocytes may induce mesenchymal cell apoptosis in IgG4-related disease. J Allergy Clin Immunol. 2021 Jan; 147(1): 368–82. |
[36] | Dandel M. Autoimmunity in cardiomyopathy-induced heart failure and cardiac autoantibody removal by immunoadsorption. J Clin Med. 2025 Feb 1; 14(3): 947. |
[37] | Bermea K, Bhalodia A, Huff A, Rousseau S, Adamo L. The role of B cells in cardiomyopathy and heart failure. Curr Cardiol Rep. 2022 Aug; 24(8): 935–46. |
[38] | Yoshikawa T, Baba A, Nagatomo Y. Autoimmune mechanisms underlying dilated cardiomyopathy. Circ J. 2009 Apr; 73(4): 602–7. |
[39] | Zhang L, Hu D, Li J, Wu Y, Liu X, Yang X. Autoantibodies against the myocardial beta1-adrenergic and M2-muscarinic receptors in patients with congestive heart failure. Chin Med J (Engl). 2002 Aug; 115(8): 1127–31. |
[40] | Saleh D, Jones RTL, Schroth SL, Thorp EB, Feinstein MJ. Emerging roles for dendritic cells in heart failure. Biomolecules. 2023 Oct 17; 13(10): 1535. |
[41] | Satoh M, Nakamura M, Saitoh H, Satoh H, Maesawa C, Segawa I, et al. Tumor necrosis factor-alpha-converting enzyme and tumor necrosis factor-alpha in human dilated cardiomyopathy. Circulation. 1999 Jun 29; 99(25): 3260–5. |
[42] | Li H, Bian Y. Fibroblast-derived interleukin-6 exacerbates adverse cardiac remodeling after myocardial infarction. Korean J Physiol Pharmacol. 2024; 28(3): 285–94. |
[43] | Pyrillou K, Burzynski LC, Clarke MCH. Alternative pathways of IL-1 activation, and its role in health and disease. Front Immunol. 2020 Dec 18; 11: 613170. |
[44] | Altara R, Mallat Z, Booz GW, Zouein FA. The CXCL10/CXCR3 axis and cardiac inflammation: Implications for immunotherapy to treat infectious and noninfectious diseases of the heart. J Immunol Res. 2016; 2016: 4396368. |
[45] | Nityashree KL, Rachitha P, Hanchinmane S, Raghavendra VB. Advancing precision medicine: Uncovering biomarkers and strategies to mitigate immune-related adverse events in immune checkpoint inhibitors therapy. Toxicol Rep. 2025 Apr 24; 14: 102035. |
[46] | Pan SY, Tian HM, Zhu Y, Gu WJ, Zou H, Wu XQ, et al. Cardiac damage in autoimmune diseases: Target organ involvement that cannot be ignored. Front Immunol. 2022 Nov 22; 13: 1056400. |
[47] | Bracamonte-Baran W, Čiháková D. Cardiac autoimmunity: Myocarditis. Adv Exp Med Biol. 2017; 1003: 187–221. |
[48] | Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids: Recent developments and mechanistic insights. Mol Cell Endocrinol. 2011 Mar 15; 335(1): 2–13. |
[49] | Naran K, Nundalall T, Chetty S, Barth S. Principles of immunotherapy: Implications for treatment strategies in cancer and infectious diseases. Front Microbiol. 2018 Dec 21; 9: 3158. |