[1] | Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020; 396(10247): 345–60. doi:10.1016/S0140-6736(20)31286-1. |
[2] | Koh LF, Ong RY, Common JE. Skin microbiome of atopic dermatitis. Allergol Int. 2022; 71(1): 31–9. doi:10.1016/j.alit.2021.11.001. |
[3] | Elias PM, Schmuth M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol. 2009; 9(5): 437–46. doi:10.1097/ACI.0b013e32832e7d36. |
[4] | Facheris P, Jeffery J, Del Duca E, et al. The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell Mol Immunol. 2023; 20: 448–74. doi:10.1038/s41423-023-00992-4. |
[5] | Brunner PM, Guttman-Yassky E, Leung DYM. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol. 2017; 139(4S): S65–76. doi:10.1016/j.jaci.2017.01.011. |
[6] | Smythe P, Wilkinson HN. The skin microbiome: current landscape and future opportunities. Int J Mol Sci. 2023; 24(4): 3950. doi:10.3390/ijms24043950. |
[7] | Scharschmidt TC, Fischbach MA. What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov Today Dis Mech. 2013; 10: e83–9. doi:10.1016/j.ddmec.2012.12.003. |
[8] | SanMiguel A, Grice EA. Interactions between host factors and the skin microbiome. Cell Mol Life Sci. 2015; 72: 1499–515. doi:10.1007/s00018-014-1812-z. |
[9] | Grice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009; 324:1190–2. doi:10.1126/science.1171700. |
[10] | Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011; 9: 244–53. doi:10.1038/nrmicro2537. |
[11] | Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science. 2009; 326: 1694–6. doi:10.1126/science.1177486. |
[12] | Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013; 498: 367–70. doi:10.1038/nature12171. |
[13] | Vijaya Chandra SH, Srinivas R, Dawson TL Jr, Common JE. Cutaneous Malassezia: commensal, pathogen, or protector? Front Cell Infect Microbiol. 2021; 10: 614446. doi:10.3389/fcimb.2020.614446. |
[14] | Sparber F, De Gregorio C, Steckholzer S, et al. The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host Microbe. 2019; 25(3): 389–403. e6. doi:10.1016/j.chom.2019.02.002. |
[15] | Zhang E, Tanaka T, Tajima M, et al. Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol. 2011; 55: 625–32. doi:10.1111/j.1348-0421.2011.00364.x. |
[16] | Rafat Z, Hashemi SJ, Ahamdikia K, et al. Study of skin and nail Candida species as a normal flora based on age groups in healthy persons in Tehran-Iran. J Mycol Med. 2017; 27: 501–5. doi:10.1016/j.mycmed.2017.08.007. |
[17] | Wheeler ML, Limon JJ, Underhill DM. Immunity to commensal fungi: detente and disease. Annu Rev Pathol. 2017; 12: 359–85. doi:10.1146/annurev-pathol-052016-100342. |
[18] | Yang J, Park S, Kim HJ, et al. The interkingdom interaction with Staphylococcus influences the antifungal susceptibility of the cutaneous fungus Malassezia. J Microbiol Biotechnol. 2023; 33(2): 180–7. doi:10.4014/jmb.2210.10039. |
[19] | Oh J, Byrd AL, Park M, et al. Temporal stability of the human skin microbiome. Cell. 2016; 165: 854–66. doi:10.1016/j.cell.2016.04.008. |
[20] | Ursu RG, Damian C, Porumb-Andrese E, et al. Merkel cell polyoma virus and cutaneous human papillomavirus types in skin cancers: optimal detection assays, pathogenic mechanisms, and therapeutic vaccination. Pathogens. 2022; 11(4): 479. doi:10.3390/pathogens11040479. |
[21] | Joh J, Jenson AB, Moore GD, et al. Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV) in non small cell lung cancer. Exp Mol Pathol. 2010; 89(3): 222–6. doi:10.1016/j.yexmp.2010.08.001. |
[22] | Rather PA, Hassan I. Human demodex mite: the versatile mite of dermatological importance. Indian J Dermatol. 2014; 59(1): 60–6. doi:10.4103/0019-5154.123498. |
[23] | Paichitrojjana A. Demodex: the worst enemies are the ones that used to be friends. Dermatol Rep. 2022; 14(3): 9339. doi:10.4081/dr.2022.9339. |
[24] | Tauber M, Balica S, Hsu CY, et al. Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. J Allergy Clin Immunol. 2016; 137: 1272–4. doi:10.1016/j.jaci.2015.07.052. |
[25] | Moriwaki M, Iwamoto K, Niitsu Y, et al. Staphylococcus aureus from atopic dermatitis skin accumulates in the lysosomes of keratinocytes with induction of IL-1α secretion via TLR9. Allergy. 2019; 74: 560–71. doi:10.1111/all.13622. |
[26] | Vaher H, Kingo K, Kolberg P, et al. Skin colonization with S. aureus can lead to increased NLRP1 inflammasome activation in patients with atopic dermatitis. J Invest Dermatol. 2023; 143: 1268–78. doi:10.1016/j.jid.2023.01.013. |
[27] | Nakamura Y, Oscherwitz J, Cease KB, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013; 503: 397–401. doi:10.1038/nature12655. |
[28] | Bitschar K, Staudenmaier L, Klink L, et al. Staphylococcus aureus skin colonization is enhanced by the interaction of neutrophil extracellular traps with keratinocytes. J Invest Dermatol. 2020; 140: 1054–65. doi:10.1016/j.jid.2019.10.017. |
[29] | Brauweiler AM, Goleva E, Leung DYM. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Invest Dermatol. 2014; 134: 2114–21. doi:10.1038/jid.2014.43. |
[30] | Laborel-Préneron E, Bianchi P, Boralevi F, et al. Effects of the Staphylococcus aureus and Staphylococcus epidermidis secretomes isolated from the skin microbiota of atopic children on CD4+ T cell activation. PLoS One. 2015; 10: e0141067. doi:10.1371/journal.pone.0141067. |
[31] | Strbo N, Pastar I, Romero L, et al. Single cell analyses reveal specific distribution of anti-bacterial molecule perforin-2 in human skin and its modulation by wounding and Staphylococcus aureus infection. Exp Dermatol. 2019; 28: 225–32. doi:10.1111/exd.13870. |
[32] | Pastar I, O’Neill K, Padula L, et al. Staphylococcus epidermidis boosts innate immune response by activation of gamma delta T cells and induction of perforin-2 in human skin. Front Immunol. 2020; 11: 550946. doi:10.3389/fimmu.2020.550946. |
[33] | Cau L, Williams MR, Butcher AM, et al. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol. 2021; 147: 955–66. doi:10.1016/j.jaci.2020.06.024. |
[34] | Williams MR, Bagood MD, Enroth TJ, et al. Staphylococcus epidermidis activates keratinocyte cytokine expression and promotes skin inflammation through the production of phenol-soluble modulins. Cell Rep. 2023; 42: 113024. doi:10.1016/j.celrep.2023.113024. |
[35] | Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017; 9: eaah4680. doi:10.1126/scitranslmed.aah4680. |
[36] | Sparber F, De Gregorio C, Steckholzer S, et al. The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host Microbe. 2019; 25: 389–403. doi:10.1016/j.chom.2019.02.002. |
[37] | Li H, Goh BN, Teh WK, et al. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J Invest Dermatol. 2018; 138: 1137–45. doi:10.1016/j.jid.2017.11.034. |
[38] | Williams MR, Nakatsuji T, Sanford JA, et al. Staphylococcus aureus induces increased serine protease activity in keratinocytes. J Invest Dermatol. 2017; 137: 377–84. doi:10.1016/j.jid.2016.10.008. |
[39] | Towell AM, Feuillie C, Vitry P, et al. Staphylococcus aureus binds to the N-terminal region of corneodesmosin to adhere to the stratum corneum in atopic dermatitis. Proc Natl Acad Sci U S A. 2021; 118: e2014444118. doi:10.1073/pnas.2014444118. |
[40] | Uluçkan Ö, Jiménez M, Roediger B, et al. Cutaneous immune cell-microbiota interactions are controlled by epidermal JunB/AP-1. Cell Rep. 2019; 29: 844–59. doi:10.1016/j.celrep.2019.09.042. |
[41] | Huang C, Zhuo F, Guo Y, et al. Skin microbiota: pathogenic roles and implications in atopic dermatitis. Front Cell Infect Microbiol. 2025; 14: 1518811. doi:10.3389/fcimb.2024.1518811. |
[42] | Jinnestål CL, Belfrage E, Bäck O, et al. Skin barrier impairment correlates with cutaneous Staphylococcus aureus colonization and sensitization to skin-associated microbial antigens in adult patients with atopic dermatitis. Int J Dermatol. 2014; 53(1): 27–33. doi:10.1111/ijd.12198. |
[43] | Shi B, Bangayan NJ, Curd E, et al. The skin microbiome is different in pediatric versus adult atopic dermatitis. J Allergy Clin Immunol. 2016; 138: 1233–6. doi:10.1016/j.jaci.2016.04.053. |
[44] | George SM, Karanovic S, Harrison DA, et al. Interventions to reduce Staphylococcus aureus in the management of eczema. Cochrane Database Syst Rev. 2019; 2019(10): CD003871. doi:10.1002/14651858.CD003871.pub3. |
[45] | Lugović-Mihić L, Meštrović-Štefekov J, Potočnjak I, et al. Atopic dermatitis: disease features, therapeutic options, and a multidisciplinary approach. Life (Basel). 2023; 13(6): 1419. doi:10.3390/life13061419 |
[46] | Weiss A, Delavenne E, Matias C, et al. Topical niclosamide (ATx201) reduces Staphylococcus aureus colonization and increases Shannon diversity of the skin microbiome in atopic dermatitis patients in a randomized, double-blind, placebo-controlled Phase 2 trial. Clin Transl Med. 2022; 12(5): e790. doi:10.1002/ctm2.790. |
[47] | Erwin DZ, Chen P. Mupirocin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK599499/. |
[48] | Leyden JJ. Mupirocin: a new topical antibiotic. J Am Acad Dermatol. 1990; 22(5 Pt 1): 879–83. doi:10.1016/0190-9622(90)70117-z. |
[49] | Spellberg B, Blaser M, Guidos RJ, et al. Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis. 2011; 52 Suppl 5: S397–428. doi:10.1093/cid/cir153. |
[50] | Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001; 14(2): 244–69. doi:10.1128/CMR.14.2.244-269.2001. |
[51] | Helmy YA, Taha-Abdelaziz K, Hawwas HAE, et al. Antimicrobial resistance and recent alternatives to antibiotics for the control of bacterial pathogens with an emphasis on foodborne pathogens. Antibiotics. 2023; 12(2): 274. doi:10.3390/antibiotics12020274. |
[52] | Rusu E, Enache G, Cursaru R, et al. Prebiotics and probiotics in atopic dermatitis. Exp Ther Med. 2019; 18(2): 926–31. doi:10.3892/etm.2019.7678. |
[53] | Lee YH, Verma NK, Thanabalu T. Prebiotics in atopic dermatitis prevention and management. J Funct Foods. 2021; 78: 104352. doi:10.1016/j.jff.2021.104352. |
[54] | Martyniak A, Medyńska-Przęczek A, Wędrychowicz A, et al. Prebiotics, probiotics, synbiotics, paraprobiotics and postbiotic compounds in IBD. Biomolecules. 2021; 11(12): 1903. doi:10.3390/biom11121903. |
[55] | Alam MJ, Xie L, Yap YA, et al. Manipulating microbiota to treat atopic dermatitis: functions and therapies. Pathogens. 2022; 11(6): 642. doi:10.3390/pathogens11060642. |
[56] | Litman T. Personalized medicine-concepts, technologies, and applications in inflammatory skin diseases. APMIS. 2019; 127(5): 386–424. doi:10.1111/apm.12934. |