[1] | Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynaecology Reprod Biol. 2013; 170 (1): 1-7. doi: 10.1016/j.ejogrb.2013.05.005. |
[2] | Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019; 366: l2381. doi: 10.1136/bmj.l2381. |
[3] | Steinthorsdottir V, McGinnis R, Williams NO, et al; FINNPEC Consortium; GOPEC Consortium. Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women. Nat Commun. 2020; 11 (1): 5976. doi: 10.1038/s41467-020-19733-6. |
[4] | Bartsch E, Medcalf KE, Park AL, Ray JG; High Risk of Pre-eclampsia Identification Group. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ. 2016; 353: i1753. doi: 10.1136/bmj.i1753. |
[5] | Wu P. Haththotuwa R, Kwok CS, et al. Preeclampsia and future cardiovascular health. Circ Cardiovasc Qual Outcomes. 2017; 10 (2): 1-9. doi: 10.1161/CIRCOUTCOMES.116.003497. |
[6] | Brown MC, Best KE, Pearce MS, Waugh J, Robson SC, Bell R. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol. 2013; 28 (1): 1-19. doi: 10.1007/s10654-013-9762-6. |
[7] | Zhou W, Nielsen JB, Fritsche LG, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet. 2018; 50 (9): 1335-1341. doi: 10.1038/s41588-018-0184-y. |
[8] | Bulik-Sullivan BK, Loh PR, Finucane HK, et al; Schizophrenia Working Group of the Psychiatric Genomics Consortium. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015; 47 (3): 291-295. doi: 10.1038/ng.3211. |
[9] | Bulik -Sullivan B, Finucane HK, Anttila V, et al; ReproGen Consortium; Psychiatric Genomics Consortium; Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015; 47 (11): 1236-1241. doi: 10.1038/ng.3406. |
[10] | Zhao L, Bracken MB, DeWan AT. Genome-wide association study of pre-eclampsia detects novel maternal single nucleotide polymorphisms and copy-number variants in subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study cohort. Ann Hum Genet. 2013; 77 (4): 277-287. doi: 10.1111/ahg.12021. |
[11] | Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol. 2017; 232 (1): R27-R44. doi: 10.1530/JOE-16-0340. |
[12] | Goulopoulou S. Maternal vascular physiology in preeclampsia. Hypertension. 2017; 70 (6): 1066-1073. doi: 10.1161/HYPERTENSIONAHA.117.08821. |
[13] | Daehn I.S., Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov. 2021; 20 (10): 770-788. doi: 10.1038/s41573-021-00242-0. |
[14] | Domigan C.K., Warren C.M., Antanesian V., et al. Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. J Cell Sci. 2015; 128 (12): 2236-2248. doi: 10.1242/jcs.163774. |
[15] | McGinnis R., Steinthorsdottir V., Williams N.O., et al; FINNPEC Consortium; GOPEC Consortium. Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat Genet. 2017; 49 (8): 1255-1260. doi: 10.1038/ng.3895. |
[16] | Reinhard N.R., Van Der Niet S., Chertkova A., et al. Identification of guanine nucleotide exchange factors that increase Cdc42 activity in primary human endothelial cells. Small GTPases. 2021; 12 (3): 226-240. doi: 10.1080/21541248.2019.1658509. |
[17] | Yang X, Yang W, McVey DG, et al. FURIN expression in vascular endothelial cells is modulated by a coronary artery disease-associated genetic variant and influences monocyte transendothelial migration. J Am Heart Assoc. 2020; 9 (4): e014333. doi: 10.1161/JAHA.119.014333. |
[18] | Ashraf S, Kudo H, Rao J, et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat Commun. 2018; 9 (1): 1960. doi: 10.1038/s41467-018-04193-w. |
[19] | Uchio -Yamada K, Yasuda K, Monobe Y, Akagi KI, Suzuki O, Manabe N. Tensin2 is important for podocyte -glomerular basement membrane interaction and integrity of the glomerular filtration barrier. Am J Physiol Renal Physiol. 2020; 318 (6): F1520-F1530. doi: 10.1152/ajprenal.00055.2020. |
[20] | Yu S, Choi WI, Choi YJ, Kim HY, Hildebrandt F, Gee HY. PLCE1 regulates the migration, proliferation, and differentiation of podocytes. Exp Mol Med. 2020; 52 (4): 594-603. doi: 10.1038/s12276-020-0410-4. |
[21] | Feng D, Kumar M, Muntel J, et al. Phosphorylation of ACTN4 leads to podocyte vulnerability and proteinuric glomerulosclerosis. J Am Soc Nephrol. 2020; 31 (7): 1479-1495. doi: 10.1681/ASN.2019101032. |
[22] | Kattah A. Preeclampsia and kidney disease: deciphering cause and effect. Curr Hypertens Rep. 2020; 22 (11): 91. doi: 10.1007/s11906-020-01099-1. |
[23] | Hasna J, Abi Nahed R, Sergent F, Alfaidy N, Bouron A. The deletion of TRPC6 channels perturbs iron and zinc homeostasis and pregnancy outcome in mice. Cell Physiol Biochem. 2019; 52 (3): 455-467. doi: 10.33594/000000033. |
[24] | Garrido - Gomez T, Castillo-Marco N, Clemente- Ciscar M, et al. Disrupted PGR-B and ESR1 signaling underlies defective decidualization linked to severe preeclampsia. Elife. 2021; 10:1 -20. doi: 10.7554/eLife.70753. |
[25] | Peng W, Liu Y, Qi H, Li Q. Alpha-actinin-4 is essential for maintaining normal trophoblast proliferation and differentiation during early pregnancy. Reprod Biol Endocrinol. 2021; 19 (1): 48. doi: 10.1186/s12958-021-00733-0. |
[26] | Buhimschi IA, Nayeri UA, Zhao G, et al. Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med. 2014; 6 (245): 245ra92. doi: 10.1126/scitranslmed.3008808. |
[27] | Tong M, Cheng SB, Chen Q, et al. Aggregated transthyretin is specifically packaged into placental nano -vesicles in preeclampsia. Sci Rep. 2017; 7(1): 6694. doi: 10.1038/s41598-017-07017-x. |
[28] | Kalkunte SS, Neubeck S, Norris WE, et al. Transthyretin is dysregulated in preeclampsia, and its native form prevents the onset of disease in a preclinical mouse model. Am J Pathol. 2013; 183 (5): 1425-1436. doi: 10.1016/j.ajpath.2013.07.022. |
[29] | Millen KR, Buhimschi CS, Zhao G, Rood KM, Tabbah S, Buhimschi IA. Serum and urine thioflavin -T-enhanced fluorescence in severe preeclampsia. Hypertens. 2018; 71 (6): 1185-1192. doi: 10.1161/HYPERTENSIONAHA.118.11034. |
[30] | Lokki A.I., Heikkinen-Eloranta J.K., Laivuori H. The immunogenetic conundrum of preeclampsia. Front Immunol. 2018; 9: 2630. doi: 10.3389/fimmu.2018.02630. |
[31] | Lokki A.I., Heikkinen-Eloranta J. Pregnancy induced TMA in severe preeclampsia results from complement-mediated thromboinflammation. Hum Immunol. 2021; 82 (5): 371-378. doi: 10.1016/j.humimm.2021.03.006. |
[32] | Martin A.R., Karczewski K.J., Kerminen S., et al. Haplotype sharing provides insights into fine-scale population history and disease in Finland. Am J Hum Genet. 2018; 102 (5): 760-775. doi: 10.1016/j.ajhg.2018.03.003. |
[33] | Tyrmi J.S., Arffman R.K., Pujol-Gualdo N., et al; FinnGen Consortium, Estonian Biobank Research Team. Leveraging Northern European population history: novel low-frequency variants for polycystic ovary syndrome. Hum Reprod. 2022; 37 (2): 352-365. doi: 10.1093/humrep/deab250. |
[34] | Sund R. Quality of the Finnish Hospital Discharge Register: a systematic review. Scand J. Public Health. 2012; 40(6): 505-515. doi: 10.1177/1403494812456637. |