[1] | Abbosov, D. (2023). Strategii kardioprotektsii pri kardiotoksichnosti khimioterapii: nastoyashchee i budushchee. Scientist, (2). Retrieved from https://cyberleninka.ru/article/n/strategii-kardioprotektsii-pri- kardiotoksichnosti-himioterapii-nastoyaschee-i-buduschee. |
[2] | Avagimyan, A., Kakturskiy, L., Heshmat-Ghahdarijani, K., Pogosova, N., & Sarrafzadegan, N. (2022). Anthracycline associated disturbances of cardiovascular homeostasis. Current Problems in Cardiology, 47(5), 100909. https://doi.org/10.1016/j.cpcardiol.2021.100909. |
[3] | Avagimyan, A., Mkrtchyan, L., Abrahomovich, O., Sheibani, M., Guevorkyan, A., Sarrafzadegan, N., ... Jndoyan, Z. (2022). AC-mode of chemotherapy as a trigger of cardiac syndrome X: A case study. Current Problems in Cardiology, 47(9), 100994. https://doi.org/10.1016/j.cpcardiol.2021.100994. |
[4] | Bhagat, A., & Kleinerman, E. S. (2020). Anthracycline-induced cardiotoxicity: Causes, mechanisms, and prevention. In Advances in Experimental Medicine and Biology (Vol. 1257, pp. 181–192). Springer. https://doi.org/10.1007/978-3-030-43032-0_15. |
[5] | Boluda, B., Solana-Altabella, A., Cano, I., Martínez-Cuadrón, D., Acuña-Cruz, E., Torres-Miñana, L., ... Montesinos, P. (2023). Incidence and risk factors for development of cardiac toxicity in adult patients with newly diagnosed acute myeloid leukemia. Cancers, 15(8), 2267. https://doi.org/10.3390/cancers15082267. |
[6] | Budanova, D. A., Belenkov, Yu. N., Sokolova, I. Ya., Antyufeeva, O. N., Ershov, V. I., Ilgisonis, I. S., & Gadaev, I. Yu. (2019). Otsenka roli disfunktsii endotelia v razvitii kardiotoksicheskogo deistviya tsitostatikov. Kardiologiya, 59(4), 64–66. https://doi.org/10.18087/cardio.2019.4.10251. |
[7] | Dempke, W. C. M., Zielinski, R., Winkler, C., Silberman, S., Reuther, S., & Priebe, W. (2023). Anthracycline-induced cardiotoxicity—Are we about to clear this hurdle? European Journal of Cancer, 185, 94–104. https://doi.org/10.1016/j.ejca.2023.02.019. |
[8] | Gimatdinova, G. R., Danilova, O. E., Davydkin, I. L., Dzhulakyan, U. L., & Usenko, E. V. (2024). Diagnosticheskie vozmozhnosti instrumental'nykh metodov issledovaniya rannei kardiotoksichnosti. Kardiovaskulyarnaya terapiya i profilaktika, 23(2), 3784. https://doi.org/10.15829/1728-8800-2024-3784. |
[9] | Gumerova, K. S., Sakhoutdinova, G. M., & Polyakova, I. M. (2019). Kardiovaskulyarnaya toksichnost' i sovremennye metody lecheniya opukholevykh novoobrazovanii. Kreativnaya khirurgiya i onkologiya, 9(4), 285–292. https://doi.org/10.24060/2076-3093-2019-9-4-285-292. |
[10] | Herrmann, J., Lenihan, D., Armenian, S., Barac, A., Blaes, A., Cardinale, D., ... Valent, P. (2022). Defining cardiovascular toxicities of cancer therapies: An IC-OS consensus statement. European Heart Journal, 43(4), 280–299. https://doi.org/10.1093/eurheartj/ehab674. |
[11] | Huang, W., Xu, R., Zhou, B., Lin, C., Guo, Y., Xu, H., & Guo, X. (2022). Clinical manifestations, monitoring, and prognosis: A review of cardiotoxicity after antitumor strategy. Frontiers in Cardiovascular Medicine, 9, 912329. https://doi.org/10.3389/fcvm.2022.912329. |
[12] | Kim, L., Fowler, B., Campbell, C. M., Slivnick, J., Nawaz, H., Kaka, Y., ... Addison, D. (2021). Acute cardiotoxicity after initiation of the novel tyrosine kinase inhibitor gilteritinib for acute myeloid leukemia. Cardio-Oncology, 7(1), 36. https://doi.org/10.1186/s40959-021-00122-x. |
[13] | Konstantinidis, I., Tsokkou, S., Grigoriadis, S., Chrysavgi, L., & Gavriilaki, E. (2024). Cardiotoxicity in acute myeloid leukemia in adults: A scoping study. Cancers, 16(13), 2474. https://doi.org/10.3390/cancers16132474. |
[14] | Kong, C. Y., Guo, Z., Song, P., Zhang, X., Yuan, Y. P., Teng, T., ... Tang, Q. Z. (2022). Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: Oxidative stress and cell death. International Journal of Biological Sciences, 18(2), 760–770. https://doi.org/10.7150/ijbs.65258. |
[15] | Lopez-Sendon, J., Alvarez-Ortega, C., Zamora Aunon, P., Buno Soto, A., Lyon, A. R., Farmakis, D., ... Lopez Fernandez, T. (2020). Classification, prevalence, and outcomes of anticancer therapy-induced cardiotoxicity: The CARDIOTOX registry. European Heart Journal, 41(18), 1720–1729. https://doi.org/10.1093/eurheartj/ehaa006. |
[16] | Miluytkina, Yu. S., Sustretov, A. S., & Limareva, L. V. (2023). Molekulyarno-geneticheskie markery riska razvitiya kardiotoksichnosti pri khimioterapii. Uspekhi molekulyarnoi onkologii, (4). Retrieved from https://cyberleninka.ru/article/n/molekulyarno-geneticheskie-markery-riska-razvitiya-kardiotoksichnosti- indutsirovannoy-himioterapiey-u-bolnyh-onkogematologicheskimi. |
[17] | Morelli, M. B., Bongiovanni, C., Da Pra, S., Miano, C., Sacchi, F., Lauriola, M., & D’Uva, G. (2022). Cardiotoxicity of anticancer drugs: Molecular mechanisms and strategies for cardioprotection. Frontiers in Cardiovascular Medicine, 9, 847012. https://doi.org/10.3389/fcvm.2022.847012. |
[18] | Vasyuk, Yu. A., Shkolnik, E. L., & Nesvetov, V. V. (2016). Kardioonkologiya: sovremennye aspekty profilaktiki antratsiklinovoi kardiotoksichnosti. Kardiologiya, 56(12), 72–79. https://doi.org/10.18565/cardio.2016.12.72-79. |
[19] | Zhou, X., Liu, Y., Shen, Y., Chen, L., Hu, W., Yan, Y., ... Zhang, H. (2024). Rescue of cardiac dysfunction during chemotherapy in acute myeloid leukaemia by blocking IL-1α. European Heart Journal, 45(25), 2235–2250. https://doi.org/10.1093/eurheartj/ehae188. |
[20] | Zhou, X., Weng, Y., Jiang, T., Ou, W., Zhang, N., Dong, Q., & Tang, X. (2023). Influencing factors of anthracycline-induced subclinical cardiotoxicity in acute leukemia patients. BMC Cancer, 23(1), 976. https://doi.org/10.1186/s12885-023-11060-5. |