[1] | Aletaha, D., & Smolen, J. S. (2018). Diagnosis and management of rheumatoid arthritis: A review. JAMA, 320(13), 1360–1372. https://doi.org/10.1001/jama.2018.13103. |
[2] | Aletaha, D., et al. (2010). 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis & Rheumatism, 62(9), 2569–2581. https://doi.org/10.1002/art.27584. |
[3] | Alluno, A., et al. (2021). CRP and cytokines in rheumatoid arthritis: A comprehensive review. Frontiers in Immunology, 12, 691766. https://doi.org/10.3389/fimmu.2021.691766. |
[4] | Alunno, A., et al. (2021). TNF-α in rheumatoid arthritis: Pathogenic mechanisms and therapeutic implications. Frontiers in Immunology, 12, 691766. https://doi.org/10.3389/fimmu.2021.691766. |
[5] | Andrés Cerezo, L., et al. (2012). Calprotectin in rheumatoid arthritis: Association with disease activity and treatment response. Journal of Rheumatology, 39(6), 1120–1126. https://doi.org/10.3899/jrheum.111382. |
[6] | Andrés Cerezo, L., et al. (2018). Calprotectin as a biomarker for predicting treatment response in rheumatoid arthritis. Arthritis Research & Therapy, 20(1), 1–9. https://doi.org/10.1186/s13075-018-1643-7. |
[7] | Arend, W. P., & Dayer, J. (1990). Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis & Rheumatism, 33(3), 305–315. https://doi.org/10.1002/art.1780330302. |
[8] | Avina-Zubieta, J. A., Choi, H. K., Sadatsafavi, M., Etminan, M., Esdaile, J. M., & Lacaille, D. (2008). Risk of cardiovascular mortality in patients with rheumatoid arthritis: A meta-analysis of observational studies. Arthritis Care & Research, 59(12), 1690–1697. https://doi.org/10.1002/art.24092. |
[9] | Blüml, S., Bonelli, M., Niederreiter, B., Puchner, A., Mayr, G., Hayer, S., Koenders, M. I., Van Den Berg, W. B., Smolen, J., & Redlich, K. (2011). Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis & Rheumatism, 63(5), 1281–1288. https://doi.org/10.1002/art.30281. |
[10] | Brennan, F. M., et al. (1997). Evidence that cytokines play a role in rheumatoid arthritis. Journal of Clinical Investigation, 100(12), 2948–2953. https://doi.org/10.1172/JCI119848. |
[11] | Brentano, F., Schorr, O., Gay, R. E., Gay, S., & Kyburz, D. (2005). TLR-2 and TLR-4 expression in synovial fibroblasts and macrophages: Role in cartilage and bone degradation in rheumatoid arthritis. Arthritis Research & Therapy, 7(4), R704-R714. https://doi.org/10.1186/ar1724. |
[12] | Centers for Disease Control and Prevention. (2020). Rheumatoid arthritis. Retrieved from https://www.cdc.gov. |
[13] | Choi, I. Y., et al. (2017). Calprotectin as a biomarker for rheumatoid arthritis: A systematic review. Journal of Clinical Medicine, 6(7), 69. https://doi.org/10.3390/jcm6070069. |
[14] | Choy, E. H., et al. (2020). Translating insights from pathogenesis into therapeutic strategies for rheumatoid arthritis. Nature Reviews Rheumatology, 16(1), 45–56. https://doi.org/10.1038/s41584-019-0339-y. |
[15] | Deane, K. D., et al. (2020). Predicting rheumatoid arthritis development in high-risk populations using biomarkers. Annals of the Rheumatic Diseases, 79(3), 345-352. https://doi.org/10.1136/annrheumdis-2019-216123. |
[16] | Filková, M., et al. (2014). MicroRNAs in rheumatoid arthritis: Potential role in diagnosis and therapy. BioDrugs, 28(4), 363–377. https://doi.org/10.1007/s40259-014-0095-0. |
[17] | Firestein, G. S., Budd, R. C., Gabriel, S. E., McInnes, I. B., & O’Dell, J. R. (2021). Kelley and Firestein’s textbook of rheumatology (11th ed.). Elsevier. |
[18] | Gabay, C., & Kushner, I. (1999). Acute-phase proteins and other systemic responses to inflammation. New England Journal of Medicine, 340(6), 448–454. https://doi.org/10.1056/NEJM199902113400607. |
[19] | Gregersen, P. K., et al. (2020). Genetic and inflammatory biomarkers in rheumatoid arthritis: Predicting outcomes and treatment response. Nature Reviews Rheumatology, 16(5), 301-312. https://doi.org/10.1038/s41584-020-0408-2. |
[20] | Hammer, H. B., et al. (2007). Calprotectin (a major leucocyte protein) is associated with the levels of anti-CCP and rheumatoid factor in a longitudinal study of patients with very early rheumatoid arthritis. Scandinavian Journal of Rheumatology, 36(4), 260–264. https://doi.org/10.1080/03009740701286805. |
[21] | Harada, A., et al. (1994). Essential involvement of interleukin-8 (IL-8) in acute inflammation. Journal of Leukocyte Biology, 56(5), 559–564. https://doi.org/10.1002/jlb.56.5.559. |
[22] | Huang, Q., & Pope, R. M. (2009). The role of Toll-like receptors in rheumatoid arthritis. Current Rheumatology Reports, 11(5), 357–364. https://doi.org/10.1007/s11926-009-0051-z. |
[23] | Inciarte-Mundo, J., et al. (2015). Calprotectin as a biomarker of disease activity in rheumatoid arthritis: A systematic review. Rheumatology, 54(6), 1005–1014. https://doi.org/10.1093/rheumatology/keu462. |
[24] | Jochems, C., Islander, U., Erlandsson, M., Verdrengh, M., Ohlsson, C., & Carlsten, H. (2005). Osteoporosis in experimental postmenopausal polyarthritis: the relative contributions of estrogen deficiency and inflammation. Arthritis Research & Therapy, 7(4). https://doi.org/10.1186/ar1753. |
[25] | Kim, S. J., et al. (2018). Journal of Immunology, 201(8), 2446–2454. https://doi.org/10.4049/jimmunol.1800116. |
[26] | Kishimoto, T. (2010). IL-6: From its discovery to clinical applications. International Immunology, 22(5), 347–352. https://doi.org/10.1093/intimm/dxq030. |
[27] | Koch, A. E., et al. (1992). Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 258(5089), 1798–1801. https://doi.org/10.1126/science.1281554. |
[28] | Kyburz, D., & Rethage, J. (2007). Toll-like receptors in rheumatoid arthritis. Arthritis Research & Therapy, 9(6), 1–7. https://doi.org/10.1186/ar2302. |
[29] | Lau, C. M., Broughton, C., Tabor, A. S., Akira, S., Flavell, R. A., Mamula, M. J., Christensen, S. R., Shlomchik, M. J., Viglianti, G. A., Rifkin, I. R., & Marshak-Rothstein, A. (2005). RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. The Journal of Experimental Medicine, 202(9), 1171–1177. https://doi.org/10.1084/jem.20050630. |
[30] | Maksymowych, W. P., et al. (2014). 14–3-3η protein as a novel biomarker for rheumatoid arthritis. Arthritis Research & Therapy, 16(2), R99. https://doi.org/10.1186/ar4547. |
[31] | McInnes, I. B., & Schett, G. (2011). The pathogenesis of rheumatoid arthritis. New England Journal of Medicine, 365(23), 2205–2219. https://doi.org/10.1056/nejmra1004965. |
[32] | McInnes, I. B., & Schett, G. (2017). Pathogenetic insights from the treatment of rheumatoid arthritis. The Lancet, 389(10086), 2328–2337. https://doi.org/10.1016/S0140-6736(17)31472-1. |
[33] | Myasoedova, E., Davis, J. M., Crowson, C. S., & Gabriel, S. E. (2010). Is the incidence of rheumatoid arthritis rising? Arthritis & Rheumatism, 62(6), 1576–1582. https://doi.org/10.1002/art.27425. |
[34] | Nakasa, T., et al. (2011). The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis & Rheumatism, 63(6), 1582–1590. https://doi.org/10.1002/art.30281. |
[35] | Nielen, M. M., et al. (2004). Specific autoantibodies precede the symptoms of rheumatoid arthritis: A study of serial measurements in blood donors. Arthritis & Rheumatism, 50(2), 380–386. https://doi.org/10.1002/art.20018. |
[36] | Nygaard, G., & Firestein, G. S. (2020). Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nature Reviews Rheumatology, 16(6), 316–333. https://doi.org/10.1038/s41584-020-0413-5. |
[37] | Ospelt, C., Brentano, F., Rengel, Y., Stanczyk, J., Kolling, C., Tak, P. P., Gay, R. E., Gay, S., & Kyburz, D. (2008). Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis. Arthritis & Rheumatism, 58(12), 3684–3692. https://doi.org/10.1002/art.24140. |
[38] | Pauley, K. M., et al. (2008). MicroRNA in autoimmunity and autoimmune diseases. Journal of Autoimmunity, 32(3-4), 189–194. https://doi.org/10.1016/j.jaut.2008.12.005. |
[39] | Pepys, M. B., & Hirschfield, G. M. (2003). C-reactive protein: A critical update. Journal of Clinical Investigation, 111(12), 1805–1812. https://doi.org/10.1172/JCI200318921. |
[40] | Pincus, T., Vogel, S., Burton, A. K., Santos, R., & Field, A. P. (2006). Fear avoidance and prognosis in back pain: A systematic review and synthesis of current evidence. Arthritis & Rheumatism, 54(12), 3999–4010. https://doi.org/10.1002/art.22273. |
[41] | Rantapää‐Dahlqvist, S., De Jong, B. a. W., Berglin, E., Hallmans, G., Wadell, G., Stenlund, H., Sundin, U., & Van Venrooij, W. J. (2003). Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis & Rheumatism, 48(10), 2741–2749. https://doi.org/10.1002/art.11223. |
[42] | Roelofs, M. F., Joosten, L. A. B., Abdollahi-Roodsaz, S., van Lieshout, A. W. T., Sprong, T., van den Hoogen, F. H. J., van den Berg, W. B., & Radstake, T. R. D. J. (2006). The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis & Rheumatism, 52(8), 2313-2322. https://doi.org/10.1002/art.21278. |
[43] | Saffar, M., Alipanah, H., & Ataollahi, M. R. (2019). The role of biomarkers in diagnosis, prognosis, treatment, determining disease activity in rheumatoid arthritis. Majallah-i Dānishgāh-i ̒Ulūm-i Pizishkī-i Fasā, 9(4), 1682–1692. http://jabs.fums.ac.ir/article-1-2141-en.html. |
[44] | Sanchez, E., Orozco, G., Lopez-Nevot, M. A., Jimenez-Alonso, J., & Martin, J. (2010). Polymorphisms of toll-like receptor 2 and 4 genes in rheumatoid arthritis and systemic lupus erythematosus. Tissue Antigens, 63(1), 54-57. https://doi.org/10.1111/j.1399-0039.2004.00153.x. |
[45] | Sánchez, E., Orozco, G., López-Nevot, M., Jiménez-Alonso, J., & Martín, J. (2003). Polymorphisms of toll-like receptor 2 and 4 genes in rheumatoid arthritis and systemic lupus erythematosus. Tissue Antigens, 63(1), 54–57. https://doi.org/10.1111/j.1399-0039.2004.00162.x. |
[46] | Scherer, H. U., Häupl, T., & Burmester, G. R. (2020). The etiology of rheumatoid arthritis. Journal of Autoimmunity, 110, 102400. https://doi.org/10.1016/j.jaut.2019.102400. |
[47] | Smolen, J. S., Aletaha, D., & McInnes, I. B. (2016). Rheumatoid arthritis. The Lancet, 388(10055), 2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8. |
[48] | Stanczyk, J., et al. (2008). Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis & Rheumatism, 58(4), 1001–1009. https://doi.org/10.1002/art.23386. |
[49] | Szekanecz, Z., et al. (2000). Chemokines and angiogenesis in rheumatoid arthritis. Frontiers in Bioscience, 5(1), D23–D29. https://doi.org/10.2741/szekanecz. |
[50] | Takeuchi, T., et al. (2021). Cytokine profiles and treatment response in rheumatoid arthritis: A biomarker-driven approach. Rheumatology, 60(4), 789-797. https://doi.org/10.1093/rheumatology/keaa567. |
[51] | Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspectives in Biology, 6(10), a016295. https://doi.org/10.1101/cshperspect.a016295. |
[52] | Tian, X., et al. (2022). IL-34 as a novel biomarker for predicting joint damage in rheumatoid arthritis. Journal of Rheumatology, 49(2), 210-218. https://doi.org/10.3899/jrheum.210123. |
[53] | van Schaardenburg, D., et al. (2021). ACPA positivity in arthralgia: Predicting progression to rheumatoid arthritis. Rheumatology Advances in Practice, 5(2), rkab034. https://doi.org/10.1093/rap/rkab034. |
[54] | van Venrooij, W. J., van Beers, J. J., & Pruijn, G. J. (2011). Anti-CCP antibodies: The past, the present, and the future. Nature Reviews Rheumatology, 7(7), 391–398. https://doi.org/10.1038/nrrheum.2011.76. |