[1] | Babaei Z., Jahanshahi M., Rabiee S.M. The fabrication of nanocomposites via calcium phosphate formation on gelatin-chitosan network and the gelatin influence on the properties of biphasic composites. Mat. Sci. Eng. C. 2013; 33: 370-375. doi:10.1016/j.msec.2012.08.053. |
[2] | Baylis JR, Chan KYT, Kastrup CJ. Halting hemorrhage with self-propelling particles and local drug delivery. Thromb Res. 2016; 141 (Suppl 2): 36-39. doi:10.1016/S0049-3848(16)30362-0. |
[3] | Chang R, Eastridge BJ, Holcomb JB. Remote damage control resuscitation in austere environments. Wilderness Environ Med. 2017; 28(2): S124-S134. doi:10.1016/j.wem.2017.02.002. |
[4] | Chaturvedi A, Dowling MB, Gustin JP, Scalea TM, Raghavan SR, Pasley JD, et al. Hydrophobically modified chitosan gauze: a novel topical hemostat. J Surg Res. 2017; 207: 45-52. doi:10.1016/j.jss.2016.04.052. |
[5] | Curry NS, Davenport R. Transfusion strategies for major haemorrhage in trauma. Br J Haematol. 2019; 184(4): 508-523. doi:10.1111/bjh.15737. |
[6] | Dai C., Liu C., Wei J., Hong H., Zhao Q. Molecular imprinted macroporous chitosan coated mesoporous silica xerogels for hemorrhage control. Biomaterials. 2010; 31: 7620-7630. doi:10.1016/j.biomaterials.2010.06.049. |
[7] | Dai C., Yuan Y., Liu C., Wei J., Hong H., Li X., Pan X. Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control. Biomaterials. 2009; 30: 5364-5375. doi:10.1016/j.biomaterials.2009.06.052. |
[8] | Davenport RA, Brohi K. Cause of trauma-induced coagulopathy. Curr Opin Anesthesiol. 2015; 29(2): 212-219. doi:10.1097/ACO.0000000000000295. |
[9] | Davlatov S. et al. Intraoperative determination of the level of amputation in patients with diabetic foot syndrome // Solution of social problems in management and economy. – 2023. – Т. 2. – №. 13. – С. 140-151. |
[10] | Davlatov S. S. The review of the form of neuropathic diabetic foot // Science and education issues. – 2021. – №. 24 (149). – С. 28-42. |
[11] | DeFrates K.G., Moore R., Borgesi J., Lin G., Mulderig T., Beachley V., Hu X. Protein-based fiber materials in medicine: A review. Nanomaterials. 2018; 8: 457. doi:10.3390/nano8070457. |
[12] | Dong C., Lv Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers. 2016; 8: 42. doi:10.3390/polym8020042. |
[13] | Fenger-Eriksen C, Fries D, David J-S, Bouzat P, Lance MD, Grottke O, et al. Pre-hospital plasma transfusion: a valuable coagulation support or an expensive fluid therapy? Crit Care. 2019; 23(1): 238. doi:10.1186/s13054-019-2524-4. |
[14] | Gu B.K., Park S.J., Kim M.S., Kim C.H. Gelatin blending and sonication of chitosan nanofiber mats produce synergistic effects on hemostatic functions. Int. J. Biol. Macromol. 2016; 82: 89-96. doi:10.1016/j.ijbiomac.2015.10.009. |
[15] | Hess JR, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Kluger Y, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma Acute Care Surg. 2008; 65(4): 748-754. doi:10.1097/TA.0b013e3181877a9c. |
[16] | Hossain K.M.Z., Patel U., Ahmed I. Development of microspheres for biomedical applications: A review. Prog. Biomater. 2015; 4: 1-19. doi:10.1007/s40204-014-0033-8. |
[17] | Huang Y., Feng L., Zhang Y., He L., Wang C., Xu J., Wu J., Kirk T.B., Guo R., Xue W. Hemostasis mechanism and applications of N-alkylated chitosan sponge. Polym. Adv. Technol. 2017; 28: 1107-1114. doi:10.1002/pat.4003. |
[18] | Ishihara M., Nakanishi K., Ono K., Sato M., Kikuchi M., Saito Y., Yura H., Matsui T., Hattori H., Uenoyama M., et al. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials. 2002; 23: 833-840. doi:10.1016/S0142-9612(01)00189-2. |
[19] | Jiang X., Wang Y., Fan D., Zhu C., Liu L., Duan Z. A novel human-like collagen hemostatic sponge with uniform morphology, good biodegradability and biocompatibility. J. Biomater. Appl. 2017; 31: 1099-1107. doi:10.1177/0885328216687663. |
[20] | Kalia S., Dufresne A., Cherian B.M., Kaith B.S., Averous L., Njuguna J., Nassiopoulos E. Cellulose-based bio- and nanocomposites: A. Review. Int. J. Polym. Sci. 2011; 2011: 2341-2348. doi:10.1155/2011/837875. |
[21] | Lan G., Lu B., Wang T., Wang L., Chen J., Yu K., Liu J., Dai F., Wu D. Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent. Colloid. Surface. B. 2015; 136: 1026-1034. doi:10.1016/j.colsurfb.2015.10.039. |
[22] | Li F., Luo P., Liu H. A potential adjuvant agent of chemotherapy: Sepia ink polysaccharides. Mar. Drugs. 2018; 16: 106. |
[23] | Li J., Wu X., Wu Y., Tang Z., Sun X., Pan M., Chen Y., Li J., Xiao R., Wang Z., et al. Porous chitosan microspheres for application as quick in vitro and in vivo hemostat. Mat. Sci. Eng. C. 2017; 77: 411-419. doi:10.1016/j.msec.2017.03.276. |
[24] | Lih E., Lee J.S., Park K.M., Park K.D. Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta Biomater. 2012; 8: 3261-3269. doi:10.1016/j.actbio.2012.05.001. |
[25] | MacGoey P, Lamb CM, Brooks AJ. Damage control: the modern paradigm. Trauma. 2016; 18(3): 165-177. doi: 10.1177/1460408616629507. |
[26] | National Academies of Sciences Engineering and Medicine. A national trauma care system: integrating military and civilian trauma systems to achieve zero preventable deaths after injury. Washington, DC: The National Academies Press; 2016. p. 530. |
[27] | Nie W., Yuan X., Zhao J., Zhou Y., Bao H. Rapidly in situ forming chitosan/epsilon-polylysine hydrogels for adhesive sealants and hemostatic materials. Carbohydr. Polym. 2013; 96: 342-348. doi:10.1016/j.carbpol.2013.04.008. |
[28] | Obidovna, D. Z., & Sulaimonovich, D. S. (2023). Influence of the Mode of Work and Recreation of the Student's Health. International journal of health systems and medical sciences, 2(3), - С. 3-5. |
[29] | Obidovna, D. Z., & Sulaymonovich, D. S. (2022). The concept of" healthy lifestyle" in psychological research. ResearchJet Journal of Analysis and Inventions, 3(06), - С. 53-64. |
[30] | Obidovna, D. Z., & Sulaymonovich, D. S. (2023). Forming a Healthy Lifestyle for Students on the Example of the Volleyball Section in Universities. European journal of innovation in nonformal education, 3(3), - С. 22-25. |
[31] | Ostomel T.A., Shi Q., Tsung C.K., Liang H., Stucky G.D. Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity. Small. 2006; 2: 1261-1265. doi:10.1002/smll.200600177. |
[32] | Pan H., Fan D., Cao W., Zhu C., Duan Z., Fu R., Li X., Ma X. Preparation and characterization of breathable hemostatic hydrogel dressings and determination of their effects on full-thickness defects. Polymers. 2017; 9: 727. doi:10.3390/polym9120727. |
[33] | Pidcoke HF, Spinella PC. RDCR symposium fifth-year anniversary edition: global prehospital care rooted in a history of military innovation. Transfusion. 2016; 56 (Suppl 2): S107-S109. doi:10.1111/trf.13606. |
[34] | Qian Z., Wang H., Tuo X., Guo H., Xu P., Liu D., Wei Y., Liu H., Fan Y., Guo X. A porous sodium polyacrylate-grafted chitosan xerogel for severe hemorrhage control synthesized from one-pot reaction. J. Mater. Chem. B. 2017; 5: 4845-4851. doi:10.1039/C7TB00802C. |
[35] | Ramos M., Valdés A., Beltrán A., Garrigós M.C. Gelatin-based films and coatings for food packaging applications. Coatings. 2016; 6: 41. doi: 10.3390/coatings6040041. |
[36] | Rijnhout TWH, Wever KE, Marinus R, Hoogerwerf N, Geeraedts LMG, Jr, Tan E. Is prehospital blood transfusion effective and safe in haemorrhagic trauma patients? A systematic review and meta-analysis. Injury. 2019; 50(5): 1017-1027. doi:10.1016/j.injury.2019.03.033. |
[37] | Ritz J.P. Intraoperative complications of the lower gastrointestinal tract: Prevention, recognition and therapy // Chirurg. 2015. Feb. 18. German. PMID: 25687814. |
[38] | Rose J.B., Pacelli S., Haj A.J.E., Dua H.S., Hopkinson A., White L.J., Rose F.R.A.J. Gelatin-based materials in ocular tissue engineering. Materials. 2014; 7: 3106-3135. doi:10.3390/ma7043106. |
[39] | Shi X., Fang Q., Ding M., Wu J., Ye F., Lv Z., Jin J. Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study. J. Biomater. Appl. 2016; 30: 1092-1102. doi:10.1177/0885328215618354. |
[40] | Shruti S., Salinas A.J., Lusvardi G., Malavasi G., Vallet-Regi M. Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses. Acta Biomater. 2013; 9: 4836-4844. doi:10.1016/j.actbio.2012.09.024. |
[41] | Song H.F., Chen A.Z., Wang S.B., Kang Y.Q., Ye S.F., Liu Y.G., Wu W.G. Preparation of chitosan-based hemostatic sponges by supercritical fluid technology. Materials. 2014; 7: 2459-2473. doi:10.3390/ma7042459. |
[42] | Song X., Zhu C., Fan D., Mi Y., Li X., Fu R., Duan Z., Wang Y., Feng R. A novel human-like collagen hydrogel scaffold with porous structure and sponge-like properties. Polymers. 2017; 9: 638. doi:10.3390/polym9120638. |
[43] | Sukul M., Ventura R.D., Bae S.H., Choi H.J., Lee S.Y., Lee B.T. Plant-derived oxidized nanofibrillar cellulose-chitosan composite as an absorbable hemostat. Mater. Lett. 2017; 197: 150-155. doi:10.1016/j.matlet.2017.03.102. |
[44] | Wang Q.Q., Kong M., An Y., Liu Y., Li J.J., Zhou X., Feng C., Li J., Cheng X.J. Hydroxybutyl chitosan thermo-sensitive hydrogel: A potential drug delivery system. J. Mater. Sci. 2013; 48: 5614-5623. doi:10.1007/s10853-013-7356-z. |
[45] | Zhou H.Y., Wang C.W., Niu H.Y., Duan B., Ma X.Y., Hong H., Yuan Y., Liu C.S. A novel droplet-fabricated mesoporous silica-based nanohybrid granules for hemorrhage control. J. Biomed. Nanotechnol. 2018; 14: 649-661. |