[1] | H. Sun et al., “IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045,” Diabetes research and clinical practice, vol. 183, p. 109119, 2022. |
[2] | K. Ogurtsova et al., “IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021,” Diabetes research and clinical practice, vol. 183, p. 109118, 2022. |
[3] | E. W. Gregg et al., “Changes in Diabetes-Related Complications in the United States, 1990–2010,” N Engl J Med, vol. 370, no. 16, pp. 1514–1523, Apr. 2014, doi: 10.1056/NEJMoa1310799. |
[4] | P. King, I. Peacock, and R. Donnelly, “The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes,” British journal of clinical pharmacology, vol. 48, no. 5, p. 643, 1999. |
[5] | D. Lovic, A. Piperidou, I. Zografou, H. Grassos, A. Pittaras, and A. Manolis, “The growing epidemic of diabetes mellitus,” Current vascular pharmacology, vol. 18, no. 2, pp. 104–109, 2020. |
[6] | N. H. Cho et al., “IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045,” Diabetes research and clinical practice, vol. 138, pp. 271–281, 2018. |
[7] | L. Kopitar, P. Kocbek, L. Cilar, A. Sheikh, and G. Stiglic, “Early detection of type 2 diabetes mellitus using machine learning-based prediction models,” Scientific reports, vol. 10, no. 1, p. 11981, 2020. |
[8] | P. Zhang et al., “Global healthcare expenditure on diabetes for 2010 and 2030,” Diabetes research and clinical practice, vol. 87, no. 3, pp. 293–301, 2010. |
[9] | R. Hegazi, M. El-Gamal, N. Abdel-Hady, and O. Hamdy, “Epidemiology of and risk factors for type 2 diabetes in Egypt,” Annals of global health, vol. 81, no. 6, pp. 814–820, 2015. |
[10] | S. H. Wild and C. D. Byrne, “Commentary: sub-types of diabetes—what’s new and what’s not,” International journal of epidemiology, vol. 42, no. 6, pp. 1600–1602, 2013. |
[11] | L. Chen, D. J. Magliano, and P. Z. Zimmet, “The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives,” Nature reviews endocrinology, vol. 8, no. 4, pp. 228–236, 2012. |
[12] | L. Guariguata, D. R. Whiting, I. Hambleton, J. Beagley, U. Linnenkamp, and J. E. Shaw, “Global estimates of diabetes prevalence for 2013 and projections for 2035,” Diabetes research and clinical practice, vol. 103, no. 2, pp. 137–149, 2014. |
[13] | J. C. Ozougwu, K. C. Obimba, C. D. Belonwu, and C. B. Unakalamba, “The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus,” J Physiol Pathophysiol, vol. 4, no. 4, pp. 46–57, 2013. |
[14] | K. A. Thompson and V. Kanamarlapudi, “Type 2 diabetes mellitus and glucagon like peptide-1 receptor signalling,” Clinical & Experimental Pharmacology, vol. 3, no. 04, 2013, Accessed: Jul. 30, 2024. [Online]. Available: https://cronfa.swan.ac.uk/Record/cronfa27395. |
[15] | F. B. Hu, “Globalization of diabetes: the role of diet, lifestyle, and genes,” Diabetes care, vol. 34, no. 6, pp. 1249–1257, 2011. |
[16] | J. M. Forbes and M. E. Cooper, “Mechanisms of Diabetic Complications,” Physiological Reviews, vol. 93, no. 1, pp. 137–188, Jan. 2013, doi: 10.1152/physrev.00045.2011. |
[17] | T. Bhurosy and R. Jeewon, “Overweight and Obesity Epidemic in Developing Countries: A Problem with Diet, Physical Activity, or Socioeconomic Status?,” The Scientific World Journal, vol. 2014, pp. 1–7, 2014, doi: 10.1155/2014/964236. |
[18] | E. S. Onge, S. A. Miller, C. Motycka, and A. DeBerry, “A review of the treatment of type 2 diabetes in children,” The Journal of Pediatric Pharmacology and Therapeutics, vol. 20, no. 1, pp. 4–16, 2015. |
[19] | M. A. Atkinson, “The pathogenesis and natural history of type 1 diabetes,” Cold Spring Harbor perspectives in medicine, vol. 2, no. 11, p. a007641, 2012. |
[20] | R. Turner et al., “UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes,” The Lancet, vol. 350, no. 9087, pp. 1288–1293, 1997. |
[21] | J. C. Chan et al., “Diabetes in Asia: epidemiology, risk factors, and pathophysiology,” Jama, vol. 301, no. 20, pp. 2129–2140, 2009. |
[22] | W. Yang et al., “Prevalence of Diabetes among Men and Women in China,” N Engl J Med, vol. 362, no. 12, pp. 1090–1101, Mar. 2010, doi: 10.1056/NEJMoa0908292. |
[23] | A. Ramachandran, S. Mary, A. Yamuna, N. Murugesan, and C. Snehalatha, “High prevalence of diabetes and cardiovascular risk factors associated with urbanization in India,” Diabetes care, vol. 31, no. 5, pp. 893–898, 2008. |
[24] | G. Roglic, “WHO Global report on diabetes: A summary,” International Journal of Noncommunicable Diseases, vol. 1, no. 1, pp. 3–8, 2016. |
[25] | A. V. Ardisson Korat, W. C. Willett, and F. B. Hu, “Diet, Lifestyle, and Genetic Risk Factors for Type 2 Diabetes: A Review from the Nurses’ Health Study, Nurses’ Health Study 2, and Health Professionals’ Follow-Up Study,” Curr Nutr Rep, vol. 3, no. 4, pp. 345–354, Dec. 2014, doi: 10.1007/s13668-014-0103-5. |
[26] | A. Golay and J. Ybarra, “Link between obesity and type 2 diabetes,” Best practice & research Clinical endocrinology & metabolism, vol. 19, no. 4, pp. 649–663, 2005. |
[27] | I. Kyrou, H. S. Randeva, C. Tsigos, G. Kaltsas, and M. O. Weickert, “Clinical problems caused by obesity,” 2015, Accessed: Jul. 30, 2024. [Online]. Available: https://europepmc.org/books/nbk278973. |
[28] | X. Zhou et al., “Prevalence of obesity and its influence on achievement of cardiometabolic therapeutic goals in Chinese type 2 diabetes patients: an analysis of the nationwide, cross-sectional 3B study,” PloS one, vol. 11, no. 1, p. e0144179, 2016. |
[29] | A. E. Mathews and C. E. Mathews, “Inherited β-cell dysfunction in lean individuals with type 2 diabetes,” Diabetes, vol. 61, no. 7, p. 1659, 2012. |
[30] | A. M. George, A. G. Jacob, and L. Fogelfeld, “Lean diabetes mellitus: an emerging entity in the era of obesity,” World journal of diabetes, vol. 6, no. 4, p. 613, 2015. |
[31] | A. Gastaldelli, “Abdominal fat: does it predict the development of type 2 diabetes? 1,” The American journal of clinical nutrition, vol. 87, no. 5, pp. 1118–1119, 2008. |
[32] | R. B. Prasad and L. Groop, “Genetics of type 2 diabetes — pitfalls and possibilities,” Genes, vol. 6, no. 1, pp. 87–123, 2015. |
[33] | J. A. Noble and H. A. Erlich, “Genetics of type 1 diabetes,” Cold Spring Harbor perspectives in medicine, vol. 2, no. 1, p. a007732, 2012. |
[34] | E. Ahlqvist, T. S. Ahluwalia, and L. Groop, “Genetics of type 2 diabetes,” Clinical chemistry, vol. 57, no. 2, pp. 241–254, 2011. |
[35] | V. Hyttinen, J. Kaprio, L. Kinnunen, M. Koskenvuo, and J. Tuomilehto, “Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study,” Diabetes, vol. 52, no. 4, pp. 1052–1055, 2003. |
[36] | P. Poulsen et al., “Increased risk of type 2 diabetes in elderly twins,” Diabetes, vol. 58, no. 6, pp. 1350–1355, 2009. |
[37] | R. Sladek et al., “A genome-wide association study identifies novel risk loci for type 2 diabetes,” Nature, vol. 445, no. 7130, pp. 881–885, 2007. |
[38] | L. J. Scott et al., “A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants,” Science, vol. 316, no. 5829, pp. 1341–1345, Jun. 2007, doi: 10.1126/science.1142382. |
[39] | E. van Exel, J. Gussekloo, A. J. de Craen, M. Frolich, A. Bootsma-Van Der Wiel, and R. G. Westendorp, “Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus Study,” Diabetes, vol. 51, no. 4, pp. 1088–1092, 2002. |
[40] | Y. Hua, J. Shen, Y. Song, Y. Xing, and X. Ye, “Interleukin-10- 592C/A,- 819C/T and- 1082A/G polymorphisms with risk of type 2 diabetes mellitus: a HuGE review and meta-analysis,” PLoS One, vol. 8, no. 6, p. e66568, 2013. |
[41] | S. Liu et al., “A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women.,” American journal of public health, vol. 90, no. 9, p. 1409, 2000. |
[42] | F. B. Hu, S. Liu, and R. M. Van Dam, “Diet and risk of Type II diabetes: the role of types of fat and carbohydrate,” Diabetologia, vol. 44, no. 7, pp. 805–817, Jul. 2001, doi: 10.1007/s001250100547. |
[43] | R. M. Van Dam, W. C. Willett, E. B. Rimm, M. J. Stampfer, and F. B. Hu, “Dietary fat and meat intake in relation to risk of type 2 diabetes in men,” Diabetes care, vol. 25, no. 3, pp. 417–424, 2002. |
[44] | M. B. Schulze et al., “Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women,” Jama, vol. 292, no. 8, pp. 927–934, 2004. |
[45] | R. Dhingra et al., “Soft Drink Consumption and Risk of Developing Cardiometabolic Risk Factors and the Metabolic Syndrome in Middle-Aged Adults in the Community,” Circulation, vol. 116, no. 5, pp. 480–488, Jul. 2007, doi: 10.1161/CIRCULATIONAHA.107.689935. |
[46] | K. J. Duffey and B. M. Popkin, “Adults with healthier dietary patterns have healthier beverage patterns,” The Journal of nutrition, vol. 136, no. 11, pp. 2901–2907, 2006. |
[47] | D. Mozaffarian, A. Kamineni, M. Carnethon, L. Djoussé, K. J. Mukamal, and D. Siscovick, “Lifestyle risk factors and new-onset diabetes mellitus in older adults: the cardiovascular health study,” Archives of internal medicine, vol. 169, no. 8, pp. 798–807, 2009. |
[48] | S. J. Kelly and M. Ismail, “Stress and Type 2 Diabetes: A Review of How Stress Contributes to the Development of Type 2 Diabetes,” Annu. Rev. Public Health, vol. 36, no. 1, pp. 441–462, Mar. 2015, doi: 10.1146/annurev-publhealth-031914-122921. |
[49] | A. Kautzky-Willer, J. Harreiter, and G. Pacini, “Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus,” Endocrine reviews, vol. 37, no. 3, pp. 278–316, 2016. |
[50] | N. Sattar, “Gender aspects in type 2 diabetes mellitus and cardiometabolic risk,” Best practice & research Clinical endocrinology & metabolism, vol. 27, no. 4, pp. 501–507, 2013. |
[51] | P. Doró, R. Benko, M. Matuz, and G. Soós, “Seasonality in the incidence of type 2 diabetes: a population-based study,” Diabetes care, vol. 29, no. 1, pp. 173–173, 2006. |
[52] | on behalf of the China Kadoorie Biobank Collaborative Group et al., “Season of birth and the risk of type 2 diabetes in adulthood: a prospective cohort study of 0.5 million Chinese adults,” Diabetologia, vol. 60, no. 5, pp. 836–842, May 2017, doi: 10.1007/s00125-016-4200-4. |
[53] | B. E. Corkey, “Diabetes: Have We Got It All Wrong?: Insulin hypersecretion and food additives: cause of obesity and diabetes?,” Diabetes care, vol. 35, no. 12, p. 2432, 2012. |
[54] | P. Alonso-Magdalena, I. Quesada, and A. Nadal, “Endocrine disruptors in the etiology of type 2 diabetes mellitus,” Nature Reviews Endocrinology, vol. 7, no. 6, pp. 346–353, 2011. |
[55] | Y. Sun, W. Pei, Y. Wu, and Y. Yang, “An association of herpes simplex virus type 1 infection with type 2 diabetes,” Diabetes care, vol. 28, no. 2, pp. 435–436, 2005. |
[56] | C.-S. Wang, S.-T. Wang, W.-J. Yao, T.-T. Chang, and P. Chou, “Hepatitis C virus infection and the development of type 2 diabetes in a community-based longitudinal study,” American journal of epidemiology, vol. 166, no. 2, pp. 196–203, 2007. |
[57] | G. Musso, R. Gambino, and M. Cassader, “Interactions Between Gut Microbiota and Host Metabolism Predisposing to Obesity and Diabetes,” Annu. Rev. Med., vol. 62, no. 1, pp. 361–380, Feb. 2011, doi: 10.1146/annurev-med-012510-175505. |
[58] | P. C. Y. Woo, S. K. P. Lau, G. K. S. Woo, A. M. Y. Fung, V. P. Y. Yiu, and K. Yuen, “Bacteremia Due to Clostridium hathewayi in a Patient with Acute Appendicitis,” J Clin Microbiol, vol. 42, no. 12, pp. 5947–5949, Dec. 2004, doi: 10.1128/JCM.42.12.5947-5949.2004. |
[59] | S. Elsayed and K. Zhang, “Bacteremia Caused by Clostridium symbiosum,” J Clin Microbiol, vol. 42, no. 9, pp. 4390–4392, Sep. 2004, doi: 10.1128/JCM.42.9.4390-4392.2004. |
[60] | Y. Wu, Y. Ding, Y. Tanaka, and W. Zhang, “Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention,” International journal of medical sciences, vol. 11, no. 11, p. 1185, 2014. |
[61] | J. Mitri, B. Dawson-Hughes, F. B. Hu, and A. G. Pittas, “Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial,” The American journal of clinical nutrition, vol. 94, no. 2, pp. 486–494, 2011. |
[62] | B. Nikooyeh et al., “Daily consumption of vitamin D–or vitamin D+ calcium–fortified yogurt drink improved glycemic control in patients with type 2 diabetes: a randomized clinical trial,” The American journal of clinical nutrition, vol. 93, no. 4, pp. 764–771, 2011. |
[63] | A. G. Pittas, Q. Sun, J. E. Manson, B. Dawson-Hughes, and F. B. Hu, “Plasma 25-hydroxyvitamin D concentration and risk of incident type 2 diabetes in women,” Diabetes care, vol. 33, no. 9, pp. 2021–2023, 2010. |
[64] | B. Thorand et al., “Effect of serum 25-hydroxyvitamin D on risk for type 2 diabetes may be partially mediated by subclinical inflammation: results from the MONICA/KORA Augsburg study,” Diabetes Care, vol. 34, no. 10, pp. 2320–2322, 2011. |
[65] | C. E. A. Chagas, M. C. Borges, L. A. Martini, and M. M. Rogero, “Focus on vitamin D, inflammation and type 2 diabetes,” Nutrients, vol. 4, no. 1, pp. 52–67, 2012. |
[66] | M. Yoshida, S. L. Booth, J. B. Meigs, E. Saltzman, and P. F. Jacques, “Phylloquinone intake, insulin sensitivity, and glycemic status in men and women,” The American journal of clinical nutrition, vol. 88, no. 1, pp. 210–215, 2008. |
[67] | J. Iwamoto, T. Takeda, and Y. Sato, “Menatetrenone (vitamin K2) and bone quality in the treatment of postmenopausal osteoporosis,” Nutrition reviews, vol. 64, no. 12, pp. 509–517, 2006. |
[68] | M. Kobayashi, K. Hara, and Y. Akiyama, “Effects of vitamin K2 (menatetrenone) and alendronate on bone mineral density and bone strength in rats fed a low-magnesium diet,” Bone, vol. 35, no. 5, pp. 1136–1143, 2004. |
[69] | J. Iwamoto, H. Matsumoto, T. Takeda, Y. Sato, X. Liu, and J. K. Yeh, “Effects of Vitamin K2 and Risedronate on Bone Formation and Resorption, Osteocyte Lacunar System, and Porosity in the Cortical Bone of Glucocorticoid-Treated Rats,” Calcif Tissue Int, vol. 83, no. 2, pp. 121–128, Aug. 2008, doi: 10.1007/s00223-008-9146-1. |
[70] | J. Iwamoto, H. Matsumoto, T. Takeda, Y. Sato, and J. K. Yeh, “Effects of Vitamin K2 on Cortical and Cancellous Bone Mass, Cortical Osteocyte and Lacunar System, and Porosity in Sciatic Neurectomized Rats,” Calcif Tissue Int, vol. 87, no. 3, pp. 254–262, Sep. 2010, doi: 10.1007/s00223-010-9387-7. |
[71] | J. Iwamoto, A. Seki, Y. Sato, H. Matsumoto, T. Tadeda, and J. K. Yeh, “Vitamin K2 Promotes Bone Healing in a Rat Femoral Osteotomy Model with or without Glucocorticoid Treatment,” Calcif Tissue Int, vol. 86, no. 3, pp. 234–241, Mar. 2010, doi: 10.1007/s00223-010-9333-8. |