[1] | World Health Organization. Clinical management of severe acute respiratory infection when COVID-19 is suspected: interim guidance. Available at: https://www.who.int/publications-detail/clinical-management-of- severeacute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected. Accessed Jan. 20, 2020. |
[2] | Malk R., Hassan E., Mohamed A., Amr E., Hassan H. Effect of an Educational Program on Nurses Performance Regarding COVID-19 in the Obstetrics and Surgical units. Egyptian Journal of Health Care, 2022; 13(4): 251-269. DOI: 10.21608/EJHC.2022.260885. |
[3] | Hassan H., Malk R., Abdelhamed A., Genedy A. Infection Control Knowledge and Practices: Program Management in Labor Units According to Standard Infection Control Precautions in Northern Upper Egypt. American Journal of Nursing Research, 2020; 8(4): 412-425. doi:10.12691/ajnr-8-4-1. |
[4] | Khan DSA, Hamid LR, Ali A, et al. Differences in pregnancy and perinatal outcomes among symptomatic versus asymptomatic COVID-19-infected pregnant women: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2021; 21:801. https://doi.org/10.1186/s12884-021-04250-1. |
[5] | Hassan H. The Impact of Evidence-Based Nursing as The Foundation for Professional Maternity Nursing Practices. Open Access Journal of Reproductive System and Sexual Disorder, 2019; 2(2): 195-197. OAJRSD.MS.ID.000135. DOI: 10.32474/OAJRSD.2019.02.000135. |
[6] | Mostafa H., Hassan H., Atea Sh., Ahmed M. Families' Perception toward Application of Infection Control Precautions with Corona Virus at Home. Egyptian Journal of Health Care, 2024; 15 (2): 511-533. DOI: 10.21608/EJHC.2024.354543. |
[7] | Hassan H. Evidence-Based Practice in Midwifery and Maternity Nursing for Excellent Quality of Care Outcomes. American Journal of Nursing Research, 2020; 8(6): 606-607. doi: 10.12691/ajnr-8-6-3. |
[8] | Bell, L. C. K., Meydan, C., Kim, J., et al. (2021). Transcriptional response modules characterize IL-1β and IL-6 activity in COVID-19. iScience, 24(1), 101896. https://doi.org/10.1016/j.isci.2020.101896. |
[9] | Bullard, J., Dust, K., Funk, D., Strong, J. E., Alexander, D., Garnett, L., Boodman, C., Bello, A., Hedley, A., Schiffman, Z., Doan, K., Bastien, N., Li, Y., Van Caeseele, P. G., & Poliquin, G. (2020). Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 71(10), 2663–2666. https://doi.org/10.1093/cid/ciaa638. |
[10] | Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England), 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5. |
[11] | Arend, W. P., Palmer, G., & Gabay, C. (2008). IL-1, IL-18, and IL-33 families of cytokines. Immunologicalreviews, 223, 20–38. https://doi.org/10.1111/j.1600-065X.2008.00624.x. |
[12] | Buckley, L. F., & Abbate, A. (2018). Interleukin-1 blockade in cardiovascular diseases: a clinical update. European heart journal, 39(22), 2063–2069. https://doi.org/10.1093/eurheartj/ehy128. |
[13] | Gabay, C., Lamacchia, C., & Palmer, G. (2010). IL-1 pathways in inflammation and human diseases. Naturereviews. Rheumatology, 6(4), 232–241. https://doi.org/10.1038/nrrheum.2010.4. |
[14] | Abbate, A., Toldo, S., Marchetti, C., Kron, J., Van Tassell, B. W., & Dinarello, C. A. (2020). Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circulation research, 126(9), 1260–1280. https://doi.org/10.1161/CIRCRESAHA.120.315937. |
[15] | Maes, B., Bosteels, C., De Leeuw, E., Declercq, J., Van Damme, K., Delporte, A., Demeyere, B., Vermeersch, S., Vuylsteke, M., Willaert, J., Bollé, L., Vanbiervliet, Y., Decuypere, J., Libeer, F., Vandecasteele, S., Peene, I., & Lambrecht, B. (2020). Treatment ofseverelyill COVID-19 patientswith anti-interleukindrugs (COV-AID): A structured summary of a study protocol for a randomised controlledtrial. Trials, 21(1), 468. https://doi.org/10.1186/s13063-020-04453-5. |
[16] | Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., Cheng, L., Li, J., Wang, X., Wang, F., Liu, L., Amit, I., Zhang, S., & Zhang, Z. (2020). Single-celllandscapeofbronchoalveolar immune cells in patientswith COVID-19. Nature medicine, 26(6), 842–844. https://doi.org/10.1038/s41591-020-0901-9. |
[17] | Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., Xie, C., Ma, K., Shang, K., Wang, W., & Tian, D. S. (2020). Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clinical infectiousdiseases: an official publication of the Infectious Diseases Society ofAmerica, 71(15), 762–768. https://doi.org/10.1093/cid/ciaa248. |
[18] | Ravindra, N. G., Alfajaro, M. M., Gasque, V., Huston, N. C., Wan, H., Szigeti-Buck, K., Yasumoto, Y., Greaney, A. M., Habet, V., Chow, R. D., Chen, J. S., Wei, J., Filler, R. B., Wang, B., … Wilen, C. B. (2021). Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS biology, 19(3), e3001143. https://doi.org/10.1371/journal.pbio.3001143. |
[19] | Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., & HLH AcrossSpeciality Collaboration, UK (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England), 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0. |
[20] | Wen, W., Su, W., Tang, H., Le, W., Zhang, X., Zheng, Y., Liu, X., Xie, L., Li, J., Ye, J., Dong, L., Cui, X., Miao, Y., Wang, D., Dong, J., Xiao, C., Chen, W., & Wang, H. (2020). Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell discovery, 6, 31. https://doi.org/10.1038/s41421-020-0168-9. |
[21] | Mardi, A., Meidaninikjeh, S., Nikfarjam, S., MajidiZolbanin, N., & Jafari, R. (2021). Interleukin-1 in COVID-19 Infection: Immunopathogenesis and Possible Therapeutic Perspective. Viral immunology, 34(10), 679–688. https://doi.org/10.1089/vim.2021.0071. |
[22] | Guidotti, L. G., & Chisari, F. V. (2000). Cytokine-mediated control of viral infections. Virology, 273(2), 221–227. https://doi.org/10.1006/viro.2000.0442. |
[23] | Orzalli, M. H., Smith, A., Jurado, K. A., Iwasaki, A., Garlick, J. A., & Kagan, J. C. (2018). An Antiviral Branch of the IL-1 Signaling Pathway Restricts Immune-Evasive Virus Replication. Molecular cell, 71(5), 825–840.e6. https://doi.org/10.1016/j.molcel.2018.07.009. |
[24] | Rizvi, S., Rizvi, S. M. S., Raza, S. T., Abbas, M., Fatima, K., Zaidi, Z. H., & Mahdi, F. (2022). Implication of single nucleotide polymorphisms in Interleukin-10 gene (rs1800896 and rs1800872) with severity of COVID-19. The Egyptian journal of medical human genetics, 23(1), 145. https://doi.org/10.1186/s43042-022-00344-3. |
[25] | Mo, P., Xing, Y., Xiao, Y., Deng, L., Zhao, Q., Wang, H., Xiong, Y., Cheng, Z., Gao, S., Liang, K., Luo, M., Chen, T., Song, S., Ma, Z., Chen, X., Zheng, R., Cao, Q., Wang, F., & Zhang, Y. (2021). Clinical Characteristics of Refractory Coronavirus Disease 2019 in Wuhan, China. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 73(11), e4208–e4213. https://doi.org/10.1093/cid/ciaa270. |
[26] | Alsayed, B. A., & Mir, R. (2022). Severe COVID-19 Pneumonia and Genetic Susceptibility: A Case Report and Literature Review. Cureus, 14(3), e23636. https://doi.org/10.7759/cureus.23636. |