[1] | Foreman K.J., Marquez N., Dolgert A., Fukutaki K., Fullman N., McGaughey M., Pletcher M.A., Smith A.E., Tang K., Yuan C.-W., et al. Forecasting life expectancy, years of life lost, and all-Cause and cause-Specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet (Lond. Engl.) 2018; 392: 2052–2090. doi: 10.1016/S0140-6736(18)31694-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[2] | Jager K.J., Kovesdy C., Langham R., Rosenberg M., Jha V., Zoccali C. A single number for advocacy and communication-Worldwide more than 850 million individuals have kidney diseases. Nephrol. Dial. Transplant. 2019; 34: 1803–1805. doi: 10.1093/ndt/gfz174. [PubMed] [CrossRef] [Google Scholar] |
[3] | Thomas B., Matsushita K., Abate K.H., Al-Aly Z., Ärnlöv J., Asayama K., Atkins R., Badawi A., Ballew S.H., Banerjee A., et al. Global Cardiovascular and Renal Outcomes of Reduced GFR. J. Am. Soc. Nephrol. 2017; 28: 2167–2179. doi: 10.1681/ASN.2016050562. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[4] | Weiner D.E., Tighiouart H., Elsayed E.F., Griffith J.L., Salem D.N., Levey A.S., Sarnak M.J. The Framingham Predictive Instrument in Chronic Kidney Disease. J. Am. Coll. Cardiol. 2007; 50: 217–224. doi: 10.1016/j.jacc.2007.03.037. [PubMed] [CrossRef] [Google Scholar] |
[5] | Zoccali C. Traditional and emerging cardiovascular and renal risk factors: An epidemiologic perspective. Kidney Int. 2006; 70: 26–33. doi: 10.1038/sj.ki.5000417. [PubMed] [CrossRef] [Google Scholar] |
[6] | Zoccali C., Vanholder R., Massy Z.A., Ortiz A., Sarafidis P., Dekker F.W., Fliser D., Fouque D., Heine G.H., Jager K.J., et al. The systemic nature of CKD. Nat. Rev. Nephrol. 2017; 13: 344–358. doi: 10.1038/nrneph.2017.52. [PubMed] [CrossRef] [Google Scholar] |
[7] | Vanholder R., Pletinck A., Schepers E., Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: A comprehensive update. Toxins. 2018; 10: 33. doi: 10.3390/toxins10010033. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[8] | Gimbrone M.A., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016; 118: 620–636. doi: 10.1161/CIRCRESAHA.115.306301. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[9] | Yilmaz M.I.M.I., Saglam M., Caglar K., Cakir E., Sonmez A., Ozgurtas T., Aydin A., Eyileten T., Ozcan O., Acikel C., et al. The determinants of endothelial dysfunction in CKD: Oxidative stress and asymmetric dimethylarginine. Am. J. Kidney Dis. 2006; 47: 42–50. doi: 10.1053/j.ajkd.2005.09.029. [PubMed] [CrossRef] [Google Scholar] |
[10] | Vanhoutte P.M., Zhao Y., Xu A., Leung S.W.S. Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. Circ. Res. 2016; 119: 375–396. doi: 10.1161/CIRCRESAHA.116.306531. [PubMed] [CrossRef] [Google Scholar] |
[11] | Vanhoutte P.M., Shimokawa H., Feletou M., Tang E.H.C. Endothelial dysfunction and vascular disease—A 30th anniversary update. Acta Physiol. 2017; 219: 22–96. doi: 10.1111/apha.12646. [PubMed] [CrossRef] [Google Scholar] |
[12] | Heiss E., Dirsch V. Regulation of eNOS Enzyme Activity by Posttranslational Modification. Curr. Pharm. Des. 2014; 20: 3503–3513. doi: 10.2174/13816128113196660745. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[13] | Peng H.M., Morishima Y., Pratt W.B., Osawa Y. Modulation of heme/substrate binding cleft of neuronal nitric-Oxide synthase (nNOS) regulates binding of Hsp90 and Hsp70 proteins and nNOS ubiquitination. J. Biol. Chem. 2012; 287: 1556–1565. doi: 10.1074/jbc.M111.323295. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[14] | Blair A., Shaul P.W., Yuhanna I.S., Conrad P.A., Smart E.J. Oxidized low density lipoprotein displaces endothelial nitric-Oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J. Biol. Chem. 1999; 274: 32512–32519. doi: 10.1074/jbc.274.45.32512. [PubMed] [CrossRef] [Google Scholar] |
[15] | Gharavi N.M., Baker N.A., Mouillesseaux K.P., Yeung W., Honda H.M., Hsieh X., Yeh M., Smart E.J., Berliner J.A. Role of endothelial nitric oxide synthase in the regulation of SREBP activation by oxidized phospholipids. Circ. Res. 2006; 98: 768–776. doi: 10.1161/01.RES.0000215343.89308.93. [PubMed] [CrossRef] [Google Scholar] |
[16] | Puccetti L., Sawamura T., Pasqui A.L., Pastorelli H., Auteri A., Bruni F. Atorvastatin reduces platelet-oxidized-LDL receptor expression in hypercholesterolaemic patients. Eur. J. Clin. Investig. 2005; 35: 47–51. doi: 10.1111/j.1365-2362.2005.01446.x. [PubMed] [CrossRef] [Google Scholar] |
[17] | Kinlay S., Libby P., Ganz P. Endothelial function and coronary artery disease. Curr. Opin. Lipidol. 2001; 12: 383–389. doi: 10.1097/00041433-200108000-00003. [PubMed] [CrossRef] [Google Scholar] |
[18] | Nawrot T.S., Staessen J.A., Holvoet P., Struijker-Boudier H.A., Schiffers P., Van Bortel L.M., Fagard R.H., Gardner J.P., Kimura M., Aviv A. Telomere length and its associations with oxidized-LDL, carotid artery distensibility and smoking. Front. Biosci. Elit. 2010; 2: 1164–1168. [PubMed] [Google Scholar] |
[19] | van der Zwan L.P., Teerlink T., Dekker J.M., Henry R.M.A., Stehouwer C.D.A., Jakobs C., Heine R.J., Scheffer P.G. Circulating oxidized LDL: Determinants and association with brachial flow-Mediated dilation. J. Lipid Res. 2009; 50: 342–349. doi: 10.1194/jlr.P800030-JLR200. [PubMed] [CrossRef] [Google Scholar] |
[20] | Demir M., Kucuk A., Sezer M.T., Altuntas A., Kaya S. Malnutrition-inflammation score and endothelial dysfunction in hemodialysis patients. J. Ren. Nutr. 2010; 20: 377–383. doi: 10.1053/j.jrn.2010.03.002. [PubMed] [CrossRef] [Google Scholar] |
[21] | Walker A.E., Kaplon R.E., Lucking S.M.S., Russell-Nowlan M.J., Eckel R.H., Seals D.R. Fenofibrate improves vascular endothelial function by reducing oxidative stress while increasing endothelial nitric oxide synthase in healthy normolipidemic older adults. Hypertension. 2012; 60: 1517–1523. doi: 10.1161/HYPERTENSIONAHA.112.203661. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[22] | Yubero-Serrano E.M., Delgado-Casado N., Delgado-Lista J., Perez-Martinez P., Tasset-Cuevas I., Santos-Gonzalez M., Caballero J., Garcia-Rios A., Marin C., Gutierrez-Mariscal F.M., et al. Postprandial antioxidant effect of the Mediterranean diet supplemented with coenzyme Q 10 in elderly men and women. Age (Omaha) 2011; 33: 579–590. doi: 10.1007/s11357-010-9199-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[23] | Merino J., Ferré R., Girona J., Aguas D., Cabré A., Plana N., Vinuesa A., Ibarretxe D., Basora J., Buixadera C., et al. Even low physical activity levels improve vascular function in overweight and obese postmenopausal women. Menopause. 2013; 20: 1036–1042. doi: 10.1097/GME.0b013e31828501c9. [PubMed] [CrossRef] [Google Scholar] |
[24] | Kaplon R.E., Gano L.B., Seals D.R. Vascular endothelial function and oxidative stress are related to dietary niacin intake among healthy middle-Aged and older adults. J. Appl. Physiol. 2014; 116: 156–163. doi: 10.1152/japplphysiol.00969.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[25] | Orem A., Yucesan F.B., Orem C., Akcan B., Kural B.V., Alasalvar C., Shahidi F. Hazelnut-Enriched diet improves cardiovascular risk biomarkers beyond a lipid-Lowering effect in hypercholesterolemic subjects. J. Clin. Lipidol. 2013; 7: 123–131. doi: 10.1016/j.jacl.2012.10.005. [PubMed] [CrossRef] [Google Scholar] |
[26] | Mineo C., Deguchi H., Griffin J.H., Shaul P.W. Endothelial and antithrombotic actions of HDL. Circ. Res. 2006; 98: 1352–1364. doi: 10.1161/01.RES.0000225982.01988.93. [PubMed] [CrossRef] [Google Scholar] |
[27] | Li X.P., Zhao S.P., Zhang X.Y., Liu L., Gao M., Zhou Q.C. Protective effect of high density lipoprotein on endothelium-Dependent vasodilatation. Int. J. Cardiol. 2000; 73: 231–236. doi: 10.1016/S0167-5273(00)00221-7. [PubMed] [CrossRef] [Google Scholar] |
[28] | Kuvin J.T., Patel A.R., Sidhu M., Rand W.M., Sliney K.A., Pandian N.G., Karas R.H. Relation between high-Density lipoprotein cholesterol and peripheral vasomotor function. Am. J. Cardiol. 2003; 92: 275–279. doi: 10.1016/S0002-9149(03)00623-4. [PubMed] [CrossRef] [Google Scholar] |
[29] | Kuvin J.T., Rämet M.E., Patel A.R., Pandian N.G., Mendelsohn M.E., Karas R.H. A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: Enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am. Heart J. 2002; 144: 165–172. doi: 10.1067/mhj.2002.123145. [PubMed] [CrossRef] [Google Scholar] |
[30] | Bisoendial R.J., Hovingh G.K., Levels J.H.M., Lerch P.G., Andresen I., Hayden M.R., Kastelein J.J.P., Stroes E.S.G. Restoration of endothelial function by increasing high-Density lipoprotein in subjects with isolated low high-Density lipoprotein. Circulation. 2003; 107: 2944–2948. doi: 10.1161/01.CIR.0000070934.69310.1A. [PubMed] [CrossRef] [Google Scholar] |
[31] | Spieker L.E., Sudano I., Hürlimann D., Lerch P.G., Lang M.G., Binggeli C., Corti R., Ruschitzka F., Lüscher T.F., Noll G. High-Density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation. 2002; 105: 1399–1402. doi: 10.1161/01.CIR.0000013424.28206.8F. [PubMed] [CrossRef] [Google Scholar] |
[32] | Shaul P.W., Anderson R.G.W. Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. - Lung Cell. Mol. Physiol. 1998; 275: L843–L851. doi: 10.1152/ajplung.1998.275.5.L843. [PubMed] [CrossRef] [Google Scholar] |
[33] | Chambliss K.L., Yuhanna I.S., Mineo C., Liu P., German Z., Sherman T.S., Mendelsohn M.E., Anderson R.G., Shaul P.W. Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ. Res. 2000; 87: e44–e52. doi: 10.1161/01.RES.87.11.e44. [PubMed] [CrossRef] [Google Scholar] |
[34] | Costa T.J., Ceravolo G.S., Dos Santos R.A., De Oliveira M.A., Araújo P.X., Giaquinto L.R., Tostes R.C., Akamine E.H., Fortes Z.B., Dantas A.P., et al. Association of testosterone with estrogen abolishes the beneficial effects of estrogen treatment by increasing ROS generation in aorta endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2015; 308: 723–732. doi: 10.1152/ajpheart.00681.2014. [PubMed] [CrossRef] [Google Scholar] |
[35] | Zuloaga K.L., Davis C.M., Zhang W., Alkayed N.J. Role of aromatase in sex-specific cerebrovascular endothelial function in mice. Am. J. Physiol. Heart Circ. Physiol. 2014; 306: H929–H937. doi: 10.1152/ajpheart.00698.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[36] | Harris R.A., Tedjasaputra V., Zhao J., Richardson R.S. Premenopausal women exhibit an inherent protection of endothelial function following a high-fat meal. Reprod. Sci. 2012; 19: 221–228. doi: 10.1177/1933719111418125. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[37] | Moreau K.L., Meditz A., Deane K.D., Kohrt W.M. Tetrahydrobiopterin improves endothelial function and decreases arterial stiffness in estrogen-Deficient postmenopausal women. Am. J. Physiol. Heart Circ. Physiol. 2012; 302: H1211–H1218. doi: 10.1152/ajpheart.01065.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[38] | Corretti M.C., Anderson T.J., Benjamin E.J., Ms C., Celermajer D., Charbonneau F., Creager M.A., Deanfield J., Drexler H., Gerhard-herman M., et al. Guidelines for the Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery A Report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002; 39: 257–265. doi: 10.1016/S0735-1097(01)01746-6. [PubMed] [CrossRef] [Google Scholar] |
[39] | Brocq M.L., Leslie S.J., Milliken P., Megson I.L. Endothelial dysfunction: From molecular mechanisms to measurement, clinical implications, and therapeutic opportunities. Antioxid. Redox Signal. 2008; 10: 1631–1673. doi: 10.1089/ars.2007.2013. [PubMed] [CrossRef] [Google Scholar] |
[40] | Anderson T.J., Gerhard M.D., Meredith I.T., Charbonneau F., Delagrange D., Creager M.A., Selwyn A.P., Ganz P. Systemic nature of endothelial dysfunction in atherosclerosis. Am. J. Cardiol. 1995; 75: 71B–74B. doi: 10.1016/0002-9149(95)80017-M. [PubMed] [CrossRef] [Google Scholar] |
[41] | Flammer A.J., Anderson T., Celermajer D.S., Creager M.a., Deanfield J., Ganz P., Hamburg N.M., Lüscher T.F., Shechter M., Taddei S., et al. The assessment of endothelial function: From research into clinical practice. Circulation. 2012; 126: 753–767. doi: 10.1161/CIRCULATIONAHA.112.093245. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[42] | Nohria A., Kinlay S., Buck J.S., Redline W., Copeland-Halperin R., Kim S., Beckman J.A. The effect of salsalate therapy on endothelial function in a broad range of subjects. J. Am. Heart Assoc. 2014; 3: e000609. doi: 10.1161/JAHA.113.000609. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[43] | Kang L.S., Chen B., Reyes R.A., Leblanc A.J., Teng B., Mustafa S.J., Muller-Delp J.M. Aging and estrogen alter endothelial reactivity to reactive oxygen species in coronary arterioles. Am. J. Physiol. Heart Circ. Physiol. 2011; 300: H2105–H2115. doi: 10.1152/ajpheart.00349.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[44] | Kruger A., Stewart J., Sahityani R., O’Riordan E., Thompson C., Adler S., Garrick R., Vallance P., Goligorsky M.S. Laser Doppler flowmetry detection of endothelial dysfunction in end-Stage renal disease patients: Correlation with cardiovascular risk. Kidney Int. 2006; 70: 157–164. doi: 10.1038/sj.ki.5001511. [PubMed] [CrossRef] [Google Scholar] |
[45] | Stewart J., Kohen A., Brouder D., Rahim F., Adler S., Garrick R., Goligorsky M.S. Noninvasive interrogation of microvasculature for signs of endothelial dysfunction in patients with chronic renal failure. Am. J. Physiol. Heart Circ. Physiol. 2004; 287: H2687–H2696. doi: 10.1152/ajpheart.00287.2004. [PubMed] [CrossRef] [Google Scholar] |
[46] | Strisciuglio T., De Luca S., Capuano E., Luciano R., Niglio T., Trimarco B., Galasso G. Endothelial dysfunction: Its clinical value and methods of assessment. Curr. Atheroscler. Rep. 2014; 16: 417. doi: 10.1007/s11883-014-0417-1. [PubMed] [CrossRef] [Google Scholar] |
[47] | Wilkinson I.B., Webb D.J. Venous occlusion plethysmography in cardiovascular research: Methodology and clinical applications. Br. J. Clin. Pharmacol. 2001; 52: 631–646. doi: 10.1046/j.0306-5251.2001.01495.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[48] | Blann A.D. A reliable marker of vascular function: Does it exist? Trends Cardiovasc. Med. 2015; 25: 588–591. doi: 10.1016/j.tcm.2015.03.005. [PubMed] [CrossRef] [Google Scholar] |