[1] | Organ Transplant, 2022 www. organ transplant.com. |
[2] | Park YH, Min SK, Lee JN, Lee HH, Jung WK, Lee JS, Lee JH, Lee YD. Risk factors on graft survival of living donor kidney transplantation. Transplant Proc. 2004 Sep; 36(7): 2023-5. doi: 10.1016/j.transproceed.2004.09.009. PMID: 15518732. |
[3] | Moysyuk Ya.G., Stolyarevich E.S., Tomilina N.A. Kidney transplant diseases. Nephrology: national guidelines. – M.: GEOTAR-Media, 2009. – p. 629-682. |
[4] | Palazzetti A, Oderda M, Dalmasso E et al. Urological consequences following renal transplantation: a review of the literature. Urologia. 2015 Oct-Dec; 82(4): 211-8. doi: 10.5301/uro.5000132. Epub 2015 Aug 3. PMID: 26350048. |
[5] | Nino-Torres L, Garcia-Lopez A, Patino-Jaramillo N, Giron-Luque F, Nino-Murcia A. Risk Factors for Urologic Complications After Kidney Transplantation and Impact in Graft Survival. Res Rep Urol. 2022 Sep 28; 14: 327-337. doi: 10.2147/RRU.S371851. PMID: 36196091; PMCID: PMC9527029. |
[6] | Motter JD, Massie AB, Garonzik-Wang JM, Pfeiffer RM, Yu KJ, Segev DL, Engels EA. Cancer Risk Following HLA-Incompatible Living Donor Kidney Transplantation. Transplant Direct. 2023 Jul 21; 9(8): e1505. doi: 10.1097/TXD.0000000000001505. PMID: 37492080; PMCID: PMC10365202. |
[7] | Sushkov A.I. AVO-incompatible related kidney transplantation. Abstract of the dissertation of the medical sciences: 14.01.24, - M, 2014. – p. 28 |
[8] | John EE, Mehta S, Sohal PM, Sandhu JS. Predictors of Short-Term Outcomes in Living Donor Renal Allograft Recipients: A Prospective Study From a Tertiary Care Center in North India. Cureus. 2022 Aug 24; 14(8): e28335. doi: 10.7759/cureus.28335. PMID: 36168334; PMCID: PMC9501959. |
[9] | Lee SH, Oh CK, Shin GT, Kim H, Kim SJ, Kim SI. Age matching improves graft survival after living donor kidney transplantation. Transplant Proc. 2014; 46(2): 449-53. doi: 10.1016/j.transproceed.2013.10.049. PMID: 24655985. |
[10] | Bellini MI, Nozdrin M, Pengel L, Knight S, Papalois V. How good is a living donor? Systematic review and meta-analysis of the effect of donor demographics on post kidney transplant outcomes. J Nephrol. 2022 Apr; 35(3): 807-820. doi: 10.1007/s40620-021-01231-7. Epub 2022 Jan 24. PMID: 35072936; PMCID: PMC8995249. |
[11] | Øien CM, Reisaeter AV, Leivestad T, Dekker FW, Line PD, Os I. Living donor kidney transplantation: the effects of donor age and gender on short- and long-term outcomes. Transplantation. 2007 Mar 15; 83(5): 600-6. doi: 10.1097/01.tp.0000255583.34329.dd. PMID: 17353781. |
[12] | Park YH, Min SK, Lee JN, Lee HH, Jung WK, Lee JS, Lee JH, Lee YD. Risk factors on graft survival of living donor kidney transplantation. Transplant Proc. 2004 Sep; 36(7): 2023-5. doi: 10.1016/j.transproceed.2004.09.009. PMID: 15518732. |
[13] | Simforoosh N, Shemshaki H, Nadjafi-Semnani M, Sotoudeh M. Living related and living unrelated kidney transplantations: A systematic review and meta-analysis. World J Transplant. 2017 Apr 24; 7(2): 152-160. doi: 10.5500/wjt.v7.i2.152. PMID: 28507918; PMCID: PMC5409915. |
[14] | Husain SA, King KL, Sanichar N, Crew RJ, Schold JD, Mohan S. Association Between Donor-Recipient Biological Relationship and Allograft Outcomes After Living Donor Kidney Transplant. JAMA Netw Open. 2021 Apr 1; 4(4): e215718. doi: 10.1001/jamanetworkopen.2021.5718. PMID: 33847748; PMCID: PMC8044734. |
[15] | Orandi BJ, Luo X, Massie AB, Garonzik-Wang JM et al. Survival Benefit with Kidney Transplants from HLA-Incompatible Live Donors. N Engl J Med. 2016 Mar 10; 374(10): 940-50. doi: 10.1056/NEJMoa1508380. PMID: 26962729; PMCID: PMC4841939. |
[16] | Koo TY, Lee JH, Min SI, Lee Y, Kim MS, Ha J, Kim SI, Ahn C, Kim YS, Kim J, Huh KH, Yang J. Presence of a survival benefit of HLA-incompatible living donor kidney transplantation compared to waiting or HLA-compatible deceased donor kidney transplantation with a long waiting time. Kidney Int. 2021 Jul; 100(1): 206-214. doi: 10.1016/j.kint.2021.01.027. Epub 2021 Feb 26. PMID: 33647326. |
[17] | Ribeiro B, Reis Pereira P, Oliveira J, Almeida M, Martins S, Malheiro J. Greater Impact of Living Donation Than HLA Mismatching in Short-Term Renal Allograft Survival. Cureus. 2023 Jan 31; 15(1): e34427. doi: 10.7759/cureus.34427. PMID: 36733571; PMCID: PMC9887496. |
[18] | Motter JD, Massie AB, Garonzik-Wang JM, Pfeiffer RM, Yu KJ, Segev DL, Engels EA. Cancer Risk Following HLA-Incompatible Living Donor Kidney Transplantation. Transplant Direct. 2023 Jul 21; 9(8): e1505. doi: 10.1097/TXD.0000000000001505. PMID: 37492080; PMCID: PMC10365202. |
[19] | Sayin B, Ozdemir A, Ayvazoglu Soy EH, Kirnap M, Akdur A, Moray G, Haberal M. Over 5 Years of Excellent Graft Kidney Function Determinants: Baskent University Experience. Exp Clin Transplant. 2019 Jan; 17 (Suppl 1): 75-77. doi: 10.6002/ect. MESOT2018.O12. PMID: 30777527. |
[20] | Miller AJ, Kiberd BA, Alwayn IP, Odutayo A, Tennankore KK. Donor-Recipient Weight and Sex Mismatch and the Risk of Graft Loss in Renal Transplantation. Clin J Am Soc Nephrol. 2017 Apr 3; 12(4): 669-676. doi: 10.2215/CJN.07660716. Epub 2017 Mar 30. PMID: 28360198; PMCID: PMC5383387. |
[21] | Jung GO, Moon JI, Kim JM et al. Can preemptive kidney transplantation guarantee longer graft survival in living-donor kidney transplantation? Single-center study. Transplant Proc. 2010 Apr; 42(3): 766-74. doi: 10.1016/j.transproceed.2010.02.050. PMID: 20430167. |
[22] | Kallab S, Bassil N, Esposito L, Cardeau-Desangles I, Rostaing L, Kamar N. Indications for and barriers to preemptive kidney transplantation: a review. Transplant Proc. 2010 Apr; 42(3): 782-4. doi: 10.1016/j.transproceed.2010.02.031. PMID: 20430170. |
[23] | Huang Y, Samaniego M. Preemptive kidney transplantation: has it come of age? Nephrol Ther. 2012 Nov; 8(6): 428-32. doi: 10.1016/j.nephro.2012.06.004. Epub 2012 Jul 28. PMID: 22841863. |
[24] | Llinàs-Mallol L, Raïch-Regué D, Pascual J, Crespo M. Alloimmune risk assessment for antibody-mediated rejection in kidney transplantation: A practical proposal. Transplant Rev (Orlando). 2023 Jan; 37(1): 100745. doi: 10.1016/j.trre.2022.100745. Epub 2022 Dec 20. PMID: 36572001. |
[25] | Sethi S, Jordan SC. Novel therapies for treatment of antibody-mediated rejection of the kidney. Curr Opin Organ Transplant. 2023 Feb 1; 28(1): 29-35. doi: 10.1097/MOT.0000000000001037. Epub 2022 Nov 24. PMID: 36579683. |
[26] | Cabezas L, Jouve T, Malvezzi P, Janbon B, Giovannini D, Rostaing L, Noble J. Tocilizumab and Active Antibody-Mediated Rejection in Kidney Transplantation: A Literature Review. Front Immunol. 2022 Apr 14; 13:839380. doi: 10.3389/fimmu.2022.839380. PMID: 35493469; PMCID: PMC9047937. |
[27] | Marino IR, Roth AE, Rees MA. Living Kidney Donor Transplantation and Global Kidney Exchange. Exp Clin Transplant. 2022 Aug; 20 (Suppl 4): 5-9. doi: 10.6002/ect.DonorSymp. 2022. L12. PMID: 36018012. |
[28] | Merweland RV, Busschbach JJV, van de Wetering J, Ismail S. Paving the way for solutions improving access to kidney transplantation: a qualitative study from a multistakeholder perspective. BMJ Open. 2023 Jun 1; 13(6): e071483. doi: 10.1136/bmjopen-2022-071483. PMID: 37263692; PMCID: PMC10254894. |
[29] | Augustine J. Kidney transplant: New opportunities and challenges. Cleve Clin J Med. 2018 Feb; 85(2): 138-144. doi: 10.3949/ccjm.85gr.18001. PMID: 29425089. |
[30] | Song J., Yu J., Prayogo G. W., et al. Understanding kidney injury molecule 1: a novel immune factor in kidney pathophysiology. American Journal of Translational Research. 2019; 11(3): 1219–1229. |
[31] | Merhi B., Bayliss G., Gohh R. Y. Role for urinary biomarkers in diagnosis of acute rejection in the transplanted kidney. World Journal of Transplantation. 2015; 5(4): 251–260. doi: 10.5500/wjt.v5.i4.251. |
[32] | Watson D., Yang J. Y. C., Sarwal R. D., et al. A novel multi-biomarker assay for non-invasive quantitative monitoring of kidney injury. Journal of Clinical Medicine. 2019; 8(4): p. 499. doi: 10.3390/jcm8040499. |
[33] | Rogulska K, Wojciechowska-Koszko I, Dołęgowska B, Kwiatkowska E, Roszkowska P, Kapczuk P, Kosik-Bogacka D. The Most Promising Biomarkers of Allogeneic Kidney Transplant Rejection. J Immunol Res. 2022 May 28; 2022: 6572338. doi: 10.1155/2022/6572338. PMID: 35669103; PMCID: PMC9167141. |
[34] | Singer E., Markó L., Paragas N., et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiologica. 2013; 207(4): 663–672. doi: 10.1111/apha.12054. |
[35] | Beker B., Corleto M., Fieiras C., Musso C. Novel acute kidney injury biomarkers: their characteristics utility and concerns. International Urology and Nephrology. 2018; 50(4): 705–713. doi: 10.1007/S11255-017-1781-X. |
[36] | Albert C., Zapf A., Haase M., et al. Neutrophil gelatinase-associated lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: a systematic review and meta-analysis. American Journal of Kidney Diseases. 2020; 76(6): 826–841. doi: 10.1053/J.AJKD.2020.05.015. |
[37] | Fontanilla J., Han W. Kidney injury molecule-1 as an early detection tool for acute kidney injury and other kidney diseases. Expert Opinion on Medical Diagnostics. 2011; 5(2): 161–173. doi: 10.1517/17530059.2011.552496. |
[38] | Alderson H.V., Ritchie J.P., Pagano S., et al. The associations of blood kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin with progression from CKD to ESRD. Clinical Journal of the American Society of Nephrology. 2016; 11(12): 2141–2149. doi: 10.2215/CJN.02670316. |
[39] | Palomino D. C. T., Marti L. C. Chemokines and immunity. Einstein (Sao Paulo). 2015; 13(3): 469–473. doi: 10.1590/S1679-45082015RB3438. |
[40] | Hughes C.E., Nibbs R. J. B. A guide to chemokines and their receptors. FEBS Journal. 2018; 285(16): 2944–2971. doi: 10.1111/febs.14466. |
[41] | Murty M. S. N., Sharma U. K., Pandey V. B., Kankare S. B. Serum cystatin C as a marker of renal function in detection of early acute kidney injury. Indian Journal of Nephrology. 2013; 23(3): 180–183. doi: 10.4103/0971-4065.111840. |
[42] | Patel M., Shyam R., Bharti H., Sachan R., Gupta K., Parihar A. Evaluation of serum cystatin C as an early biomarker of acute kidney injury in patients with acute pancreatitis. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine. 2020; 24(9): 777–782. doi: 10.5005/JP-JOURNALS-10071-23572. |
[43] | Lorenzen J., Krämer R., Kliem V., et al. Circulating levels of osteopontin are closely related to glomerular filtration rate and cardiovascular risk markers in patients with chronic kidney disease. European Journal of Clinical Investigation. 2010; 40(4): 294–300. doi: 10.1111/J.1365-2362.2010.02271.X. |
[44] | Varalakshmi B., Kiranmyai V., Aparna B., Ram R., Rao P., Kumar V. Plasma osteopontin levels in patients with acute kidney injury requiring dialysis: a study in a tertiary care institute in South India. International Urology and Nephrology. 2020; 52(5): 917–921. doi: 10.1007/S11255-020-02417-X. |
[45] | Guo J., Guan Q., Liu X et al. Relationship of clusterin with renal inflammation and fibrosis after the recovery phase of ischemia-reperfusion injury. BMC Nephrology. 2016; 17(1): p.133. doi: 10.1186/s12882-016-0348-x. |
[46] | Yaghoubi M, Cressman S, Edwards L et al. A Systematic Review of Kidney Transplantation Decision Modelling Studies. Appl Health Econ Health Policy. 2023 Jan; 21(1): 39-51. doi: 10.1007/s40258-022-00744-x. Epub 2022 Aug 9. PMID: 35945483. |