[1] | Lesniak WG, Chu C, Jablonska A, Du Y, Pomper MG, Walczak P, et al. A distinct advantage to intraarterial delivery of ^89Zr-bevacizumab in PET imaging of mice with and without osmotic opening of the blood-brain barrier. J Nucl Med. 2019; 60(5): 617–22. doi: 10.2967/jnumed.118.218792. |
[2] | Baumgarten L, Brucker D, Tirniceru A, Kienast Y, Grau S, Burgold S, et al. Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin Cancer Res. 2011; 17(19): 6192–205. doi: 10.1158/1078-0432.CCR-10-1868. |
[3] | Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol. 2017; 14(7): 434–52. doi: 10.1038/nrclinonc.2016.204. |
[4] | Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [published correction appears in CA Cancer J Clin. CA Cancer J Clin. 2020;68(6):394–424. doi: 10.3322/caac.21492. |
[5] | Jacques TS, Swales A, Brzozowski MJ, Henriquez NV, Linehan JM, Mirzadeh Z, et al. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumor phenotypes. EMBO J. 2010; 29: 222–35. doi: 10.1038/emboj.2009.327. |
[6] | Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005; 352(10): 987–96. doi: 10.1056/NEJMoa043330. |
[7] | Kopecka J, Riganti C. Overcoming drug resistance in glioblastoma: new options in sight? Cancer Drug Resist. 2021; 4: 512–6. doi: 10.20517/cdr.2021.03. |
[8] | Fakhoury M. Drug delivery approaches for the treatment of glioblastoma multiforme. Artif Cells Nanomed Biotechnol. 2016; 44(6): 1365–73. doi: 10.3109/21691401.2015.1052467. |
[9] | Chen W, Wu Q, Mo L, Nassi M. Intra-arterial chemotherapy is not superior to intravenous chemotherapy for malignant gliomas: a systematic review and meta-analysis. Eur Neurol. 2013; 70(1-2): 124–32. doi: 10.1159/000346580. |
[10] | Burkhardt JK, Riina HA, Shin BJ, Moliterno JA, Hofstetter CP, Boockvar JA. Intra-arterial chemotherapy for malignant gliomas: a critical analysis [published correction appears in Interv Neuroradiol. Interv Neuroradiol. 2011; 17(3): 286–95: 506. doi: 10.1177/159101991101700302. |
[11] | D'Amico RS, Khatri D, Reichman N, Patel NV, Wong T, Fraling SH, et al. Super selective intra-arterial cerebral infusion of modern chemotherapeutics after blood-brain barrier disruption: where are we now, and where we are going [published correction appears in J Neurooncol. J Neurooncol. 2020; 147(2): 261–78. doi: 10.1007/s11060-020-03435-6. |
[12] | Basso U, Lonardi S, Brandes AA. Is intra-arterial chemotherapy useful in high-grade gliomas? Expert Rev Anticancer Ther. 2002; 2(5): 507–19. doi: 10.1586/14737140.2.5.507. |
[13] | Bierman HR, Byron RL Jr, Miller ER, Shimkin MB. Effects of intra-arterial administration of nitrogen mustard. Am J Med. 1950; 8: 535. doi: 10.1016/0002-9343(50)90263-4. |
[14] | Bierman HR, Byron RL Jr, Kelly KH. Therapy of inoperable visceral and regional metastases by intra-arterial catheterization in man. Cancer Res. 1951; 11: 236. |
[15] | Klopp C.T., Alford T.C., Bateman J, Berry G.N., Winship T. Fractionated intra-arterial cancer chemotherapy with methyl bis amine hydrochloride; A preliminary report. Ann Surg. 1950; 132: 811–32. doi: 10.1097/00000658-195010000-00018. |
[16] | French JD, West PM, Von Amerongen FK, Magoun HW. Effects of intracarotid administration of nitrogen mustard on normal brain and brain tumors. J Neurosurg. 1952;9:378–89. doi: 10.3171/jns.1952.9.4.0378. |
[17] | Wilson CB. Chemotherapy of brain tumors by continuous arterial infusion. Surgery. 1964; 55: 640–65321. |
[18] | Owens G, Javid R, Belmusto L, Bender M, Blau M. Intra-arterial vincristine therapy of primary gliomas. 1965; 18: 756–60. doi: 10.1002/1097-0142(196506) 18:63.0.CO;2-#. |
[19] | Eckman WW, Patlak CS, Fenstermacher JD. A critical evaluation of the principles governing the advantages of intra-arterial infusions. J Pharmacokinet Biopharm. 1974; 2: 257–85. doi: 10.1007/BF01059765. |
[20] | Rapoport SI, Hori M, Klatzo I. Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol. 1972; 223: 323–31. doi: 10.1152/ajplegacy.1972.223.2.323. |
[21] | Neuwelt EA, Maravilla KR, Frenkel EP, Rapaport SI, Hill SA, Barnett PA. Osmotic blood-brain barrier disruption: Computerized tomographic monitoring of chemotherapeutic agent delivery. J Clin Invest. 1979; 64(2): 684–8. doi: 10.1172/JCI109509. |
[22] | Neuwelt EA, Frenkel EP, Diehl JT, Maravilla KR, Vu LH, Clark WK, et al. Osmotic blood-brain barrier disruption: A new means of increasing chemotherapeutic agent delivery. Trans Am Neurol Assoc. 1979; 104: 256–60. |
[23] | Neuwelt EA, Glasberg M, Diehl J, Frenkel EP, Barnett P. Osmotic blood-brain barrier disruption in the posterior fossa of the dog. J Neurosurg. 1981; 55: 742–8. doi: 10.3171/jns.1981.55.5.0742. |
[24] | Neuwelt EA, Frenkel EP, D’Agostino AN, Carney DN, Minna JD, Barnett PA, et al. Growth of human lung tumor in the brain of the nude rat as a model to evaluate antitumor agent delivery across the blood-brain barrier. Cancer Res. 1985; 45: 2827–33. |
[25] | Neuwelt EA, Barnett PA, McCormick CI, Remsen LG, Kroll RA, Sexton G. Differential permeability of a human brain tumor xenograft in the nude rat: impact of tumor size and method of administration on optimizing delivery of biologically diverse agents. Clin Cancer Res. 1998; 4: 1549–55. |
[26] | Levin VA, Kabra PM, Freeman-Dove MA. Pharmacokinetics of intracarotid artery ^14C-BCNU in the squirrel monkey. J Neurosurg. 1978; 48(4): 587–93. doi: 10.3171/jns.1978.48.4.0587. |
[27] | Greenberg HS, Ensminger WD, Chandler WF, Layton PB, Junck L, Knake J, et al. Intra-arterial BCNU chemotherapy for treatment of malignant gliomas of the central nervous system. J Neurosurg. 1984; 61: 423–9. doi: 10.3171/jns.1984.61.3.0423. |
[28] | Fenstermacher JD, Johnson JA. Filtration and reflection coefficients of the rabbit blood-brain barrier. Am J Physiol. 1966; 211: 341–6. doi: 10.1152/ajplegacy.1966.211.2.341. |
[29] | Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015; 19: 1–12. doi: 10.1016/j.drup.2015.02.002. |
[30] | Ningaraj NS, Rao M, Hashizume K, Asotra K, Black KL. Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels. J Pharmacol Exp Ther. 2002; 301(3): 838–51. doi: 10.1124/jpet.301.3.838. |
[31] | Siegal T, Rubinstein R, Bokstein F, Schwartz A, Lossos A, Shalom E, et al. In vivo assessment of the window of barrier opening after osmotic blood-brain barrier disruption in humans. J Neurosurg. 2000; 92(4): 599–605. doi: 10.3171/jns.2000.92.4.0599. |
[32] | Fortin D, Desjardins A, Benko A, Niyonsega T, Boudrias M. Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in malignant brain tumors: the Sherbrooke experience. Cancer. 2005; 103: 2606–2. doi: 10.1002/cncr.21112. |
[33] | Nakagawa H, Groothuis D, Blasberg RG. The effect of graded hypertonic intracarotid infusions on drug delivery to experimental RG-2 gliomas. Neurology. 1984; 34: 1571–81. doi: 10.1212/wnl.34.12.1571. |
[34] | Groothuis DR, Warkne PC, Molnar P, Lapin GD, Mikhael MA. Effect of hyperosmotic blood-brain barrier disruption on transcapillary transport in canine brain tumors. J Neurosurg. 1990; 72: 441–9. doi: 10.3171/jns.1990.72.3.0441. |
[35] | Neuwelt EA, Goldman DL, Dahlborg SA, Crossen J, Ramsey F, Roman Goldstein S, et al. Primary CNS lymphoma treated with osmotic blood-brain barrier disruption: prolonged survival and preservation of cognitive function. J Clin Oncol. 1991; 9: 1580–90. doi: 10.1200/JCO.1991.9.9.1580. |
[36] | Zünkeler B, RE C, Olson J, Blasberg RG, DeVroom H, Lutz RJ, et al. Quantification and pharmacokinetics of blood-brain barrier disruption in humans. J Neurosurg. 1996; 85: 1056–65. doi: 10.3171/jns.1996.85.6.1056. |
[37] | Burkhardt JK, Riina H, Shin BJ, Christos P, Kesavabhotla K, Hofstetter CP, et al. Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg. 2012; 77: 130–4. doi: 10.1016/j.wneu.2011.05.056. |
[38] | Bartus RT. The blood-brain barrier as a target for pharmacological modulation. Curr Opin Drug Discov Dev. 1999; 2: 152–67. |
[39] | Gumerlock MK, Neuwelt EA. The effect of anesthesia on osmotic blood-brain barrier disruption. Neurosurgery. 1990; 26: 268–77. doi: 10.1227/00006123-199002000-00014. |
[40] | Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery. 1998; 42: 1083–100. doi: 10.1097/00006123-199805000-00082. |
[41] | Raymond JJ, Robertson DM, Dinsdale HB. Pharmacological modification of bradykinin-induced breakdown of the blood-brain barrier. Neurol Sci. 1986; 13: 214–22. doi: 10.1017/S0317167100036301. |
[42] | Inamura T, Black KL. Bradykinin selectively opens blood-tumor barrier in experimental brain tumors, J. Cerebr. Blood Flow Metabol. 1994; 14: 862–70. |