[1] | Koehler RC, Yang Z-J, Lee JK, Martin LJ. Perinatal hypoxic-ischemic brain injury in large animal models: Relevance to human neonatal encephalopathy. // Journal of Cerebral Blood Flow & Metabolism. 2018; 38(12): 2092-2111. doi:10.1177/0271678X18797328. |
[2] | Cornet M.C., Kuzniewicz M., Scheffler A., Forquer H., Hamilton E., Newman T.B., Wu Y.W. Perinatal Hypoxic-Ischemic Encephalopathy: Incidence Over Time Within a Modern US Birth Cohort. // Pediatric neurology, (2023). 149, 145–150. |
[3] | Lee B.R., Class H.C. Cognitive outcomes in late childhood and adolescence of neonatal hypoxicischemic encephalopathy. // Clinical and Experimental Pediatrics 2021; 64 (12), р. 608-18. |
[4] | Muntsant A, Shrivastava K, Recasens M and Giménez-Llort L Severe Perinatal Hypoxic-Ischemic Brain Injury Induces Long-Term Sensorimotor Deficits, Anxiety-Like Behaviors and Cognitive Impairment in a Sex-, Age- and Task-Selective Manner in C57BL/6 Mice but Can Be Modulated by Neonatal Handling. // Front. Behav. Neurosci. 2019, №13, 7. doi: 10.3389/fnbeh.2019.00007. |
[5] | Molloy, E.J., Branagan, A., Hurley, T. et al. Neonatal encephalopathy and hypoxic–ischemic encephalopathy: moving from controversy to consensus definitions and subclassification. // Pediatr Res 94, 2023, 1860–1863. |
[6] | Gónzalez de Dios, J., & Moya, M. (1996). Asfixia perinatal, encefalopatía hipóxica-isquémica y secuelas neurológicas en recién nacidos a término: estudio epidemiológico (I) [Perinatal asphyxia, hypoxic-ischemic encephalopathy and neurological sequelae in full-term newborns: an epidemiological study (1)]. // Revista de neurologia, 24(131), 812–819. |
[7] | Perinatal asphyxia and hypoxic-ischemic encephalopathy // https://www.amboss.com/us/knowledge/perinatal-asphyxia-and-hypoxic-ischemic-encephalopathy. |
[8] | Santina A Zanelli Hypoxic-Ischemic Encephalopathy // 2018. |
[9] | Baker, J., Safarzadeh, M. A., Incognito, A. V., Jendzjowsky, N. G., Foster, G. E., Bird, J. D., Raj, S. R., Day, T. A., Rickards, C. A., Zubieta-DeUrioste, N., Alim, U., & Wilson, R. J. A. Functional optical coherence tomography at altitude: retinal microvascular perfusion and retinal thickness at 3,800 meters. // Journal of applied physiology (Bethesda, Md.: 1985), 2022. № 133(3), р. 534–545. |
[10] | Abbas Al-Hawasi Retinal ganglion cell examination with Optical Coherence Tomography reflects physiological and pathological changes in the eye and the brain. // Ali Bin Abi-Talib, 2023, 100 р., DOI:10.3384/9789180754194. |
[11] | Cappellini G, Sylos-Labini F, Dewolf AH, Solopova IA, Morelli D, Lacquaniti F and Ivanenko Y (2020) Maturation of the Locomotor Circuitry in Children With Cerebral Palsy. Front. Bioeng. Biotechnol. 8:998. doi: 10.3389/fbioe.2020.00998. |
[12] | Weinstein J.M., Gilmore R.O., Shaikh S.M., Kunselman A.R., Trescher W.V., Tashima L.M., Boltz M.E., McAuliffe M.B., Cheung A., & Fesi, J.D. Defective motion processing in children with cerebral visual impairment due to periventricular white matter damage. // Developmental medicine and child neurology, 2012. №54(7), e1–e8. |
[13] | Grego, L., Pignatto, S., Busolini, E., Rassu, N., Samassa, F., Prosperi, R., Pittini, C., Cattarossi, L., & Lanzetta, P. Spectral-domain OCT changes in retina and optic nerve in children with hypoxic-ischaemic encephalopathy. // Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, 2021. № 259 (5), р. 1343–1355. |
[14] | Клиточенко Г.В., Малюжинская Н.В. Этиология, патогенез и диагностика перинатального поражения нервной системы у детей // Лекарственный вестник, 2019. Том 13, № 1 (73). с. 38-41. |
[15] | Ergashev Sukhrob Saidovich, Niyazov Shukhrat Toshtemirovich, Jurabekova Aziza Takhirovna Clinical and Neurophysiological Features of Children Born Prematurely // American Journal of Medicine and Medical Sciences, 2023; № 13(5): р. 612-615. |