[1] | Yuen K.S., Ye Z.W., Fung S.Y., Chan C.P., Jin D.Y. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 2020; 10: 38–40. doi: 10.1186/s13578-020-00404-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[2] | Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020; 395: 565–574. doi: 10.1016/S0140-6736(20)30251-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[3] | Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281–292. doi: 10.1016/j.cell.2020.02.058. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[4] | Zhang L., Lin D., Sun X., Curth U., Drosten C., Sauerhering L., Becker S., Rox K., Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020; 368: 409–412. doi: 10.1126/science.abb3405. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[5] | Rey F.A., Lok S.M. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines. Cell. 2018; 172: 1319–1334. doi: 10.1016/j.cell.2018.02.054. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[6] | Rochman N.D., Wolf Y.I., Faure G., Mutz P., Zhang F., Koonin E.V. Ongoing global and regional adaptive evolution of SARS-CoV-2. Proc. Natl. Acad. Sci. USA. 2021; 118: 116–121. doi: 10.1073/pnas.2104241118. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[7] | Kim S., Liu Y., Lei Z., Dicker J., Cao Y., Zhang X.F., Im W. Differential interactions between human ACE2 and spike RBD of SARS-CoV-2 variants of concern. J. Chem. Theory Comput. 2021; 17: 7972–7979. doi: 10.1021/acs.jctc.1c00965. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[8] | Wu L., Zhou L., Mo M., Liu T., Wu C., Gong C., Lu K., Gong L., Zhu W., Xu Z. SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2. Sig. Transduct. Target. Ther. 2022; 7: 8–12. doi: 10.1038/s41392-021-00863-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[9] | Verity R., Okell L.C., Dorigatti I., Winskill P., Whitttaker C., Imai N., Cuomo-Dannenburg G., Thompson H., Walker P., Fu H., et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect. Dis. 2020; 20: 669–677. doi: 10.1016/S1473-3099(20)30243-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[10] | Perez-Saez J., Lauer S., Kaiser L., Regard S., Delaporte E., Guessous I., Stringhini S., Azman A.S., Serocov-POP Study Group Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect. 2020; 20: E69–E70. doi: 10.1016/S1473-3099(20)30584-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[11] | Salje H., Tran Kiem C., Lefrancq N., Courtejoie N., Bosetti P., Paireau J., Andronico J., Hozé N., Richet J., Dubost C., et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020; 369: 208–211. doi: 10.1126/science.abc3517. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[12] | Onder G., Rezza G., Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020; 323: 1775–1776. doi: 10.1001/jama.2020.4683. [PubMed] [CrossRef] [Google Scholar] |
[13] | Bhatraju P.K., Ghassemieh B.J., Nichols M., Kim R., Jerome K.R., Nalla A.K., Greninger A.L., Pipavath S., Wurfel M.M., Evans L., et al. Covid-19 in Critically Ill Patients in the Seattle Region—Case Series. N. Engl. J. Med. 2020; 382: 2012–2022. doi: 10.1056/NEJMoa2004500. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[14] | Williamson E., Walker A.J., Bhaskaran K.J., Bacon S., Bates C., Morton C.E., Curtis H.J., Mehrkar A., Evans D., Inglesby P. OpenSAFELY: Factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. Nature. 2020; 584: 430–436. doi: 10.1038/s41586-020-2521-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[15] | Petrilli C.M., Jones S.A., Yang J., Rajagopalan H., O’Donnell L., Chernyak Y., Tobin K.A., Cerfolio R.J., Francois F., Horwitz L.I. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ. 2020; 369: m1966. doi: 10.1136/bmj.m1966. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[16] | Richardson S., Hirsch J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W., the Northwell COVID-19 Research Consortium. Barnaby D.P., Becker L.B., Chelico J.D., et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA. 2020; 323: 2052–2059. doi: 10.1001/jama.2020.6775. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[17] | Cheng Y., Luo R., Wang K., Zhang M., Wang Z., Dong L., Li J., Yao Y., Ge S., Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020; 97: 829–838. doi: 10.1016/j.kint.2020.03.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[18] | Mehra M.R., Desai S.S., Kuy S., Henry T.D., Patel A.N. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. N. Engl. J. Med. 2020; 382: 99–102. doi: 10.1056/NEJMc2021225. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Retracted |
[19] | Laird J.R., Pareek G., Miner M., Sobel D.W., Balestrieri A., Sfikakis P.P., Tsoulfas G., Protogerou A., Misra D.P., Agarwal V., et al. COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review. Comput. Biol. Med. 2020; 124: 103–960. [PMC free article] [PubMed] [Google Scholar] |
[20] | Palaiodimos L., Kokkinidis D.G., Li W., Karamanis D., Ognibene J., Arora S., Southern W.N., Mantzoros C.S. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020; 108: 154–262. doi: 10.1016/j.metabol.2020.154262. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[21] | Cariou B., Hadjadj S., Wargny M., Pichelin M., Al-Salameh A., Allix I. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: The CORONADO study. Diabetologia. 2020; 63: 1500–1515. doi: 10.1007/s00125-020-05180-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[22] | Gregory J.M., Slaughter J.C., Duffus S.H., Smith T.J., LeStourgeon L.M., Jaser S.S. COVID-19 severity is tripled in the diabetes community: A prospective analysis of the pandemic’s impact in type 1 and type 2 diabetes. Diabetes Care. 2021; 44: 526–532. doi: 10.2337/dc20-2260. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[23] | Barron E., Bakhai C., Kar P., Weaver A., Bradley D., Ismail H., Knighton P., Holman N., Khunti K., Sattar N., et al. Associations of Type 1 and Type 2 Diabetes With COVID-19-Related Mortality in England: A Whole-Population Study. Lancet Diabetes Endocrinol. 2020; 8: 813–822. doi: 10.1016/S2213-8587(20)30272-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[24] | Holman N., Knighton P., Kar P., O’Keefe J., Curley M., Weaver A., Barron E., Bakhai C., Khunti K., Wareham N., et al. Risk Factors for COVID-19-Related Mortality in People with Type 1 and Type 2 Diabetes in England: A Population-Based Cohort Study. Lancet Diabetes Endocrinol. 2020; 8: 823–833. doi: 10.1016/S2213-8587(20)30271-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[25] | Wang S., Ma P., Zhang S., Song S., Wang Z., Ma Y., Xu J., Wu F., Duan L., Yin Z., et al. Fasting Blood Glucose at Admission is an Independent Predictor for 28-Day Mortality in Patients With COVID-19 Without Previous Diagnosis of Diabetes: A Multi-Centre Retrospective Study. Diabetologia. 2020; 63: 2102–2111. doi: 10.1007/s00125-020-05209-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[26] | Wu J., Huang J., Zhu G., Wang Q., Lv Q., Huang Y., Yu Y., Si X., Wang C., Liu Y., et al. Elevation of Blood Glucose Level Predicts Worse Outcomes in Hospitalized Patients With COVID-19: A Retrospective Cohort Study. BMJ Open Diabetes Res. Care. 2020; 8: 14–76. doi: 10.1136/bmjdrc-2020-001476. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[27] | Coppelli A., Giannarelli R., Aragona M., Penno G., Falcone M., Tiseo G., Ghiadoni Z., Greta Barbieri L., Monzani F., Virdis A., et al. Hyperglycemia at Hospital Admission is Associated with Severity of the Prognosis in Patients Hospitalized for COVID-19: The Pisa COVID-19 Study. Diabetes Care. 2020; 43: 2345–2348. doi: 10.2337/dc20-1380. [PubMed] [CrossRef] [Google Scholar] |
[28] | Bode B., Garrett V., Messler J., McFarland R., Crowe J., Booth R., Klonoff D. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. J. Diabetes Sci. Technol. 2020; 14: 813–821. doi: 10.1177/1932296820924469. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[29] | Zhu L., She Z.G., Cheng X., Qin J., Zhang X.J., Cai J., Lei F., Wang H., Xie J., Wang W., et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-Existing Type 2 Diabetes. Cell Metab. 2020; 31: 1068–1077. doi: 10.1016/j.cmet.2020.04.021. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[30] | Filippatos T.D., Liontos A., Papakitsou I., Elisaf M.S. SGLT2 inhibitors and cardioprotection: A matter of debate and multiple hypotheses. Postgrad. Med. 2019; 131: 82–88. doi: 10.1080/00325481.2019.1581971. [PubMed] [CrossRef] [Google Scholar] |
[31] | Bornstein S.R., Rubino F., Khunti K., Mingrone G., Hopkins D., Birkenfeld A.L., Boehm B., Amiel S., Holt R.I., Skyler J.S. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020; 8: 546–550. doi: 10.1016/S2213-8587(20)30152-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[32] | Hampp C., Swain R.S., Horgan C., Dee E., Qiang Y., Dutcher S.K., Petrone A., Chen Tilney R., Maro J.C., Panozzo C.A. Use of Sodium-Glucose Cotransporter 2 Inhibitors in Patients with Type 1 Diabetes and Rates of Diabetic Ketoacidosis. Diabetes Care. 2020; 43: 90–97. doi: 10.2337/dc19-1481. [PubMed] [CrossRef] [Google Scholar] |
[33] | Mota M., Stefan A. Covid-19 and Diabetes-A Bidirectional Relationship? Rom. J. Diabetes Nutr. Metab. Dis. 2020; 27: 77–79. [Google Scholar] |
[34] | Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020; 94: 120–127. doi: 10.1128/JVI.00127-20. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[35] | Erkan C., Medine C.C. Comment on ‘Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? J. Hypertens. 2020; 38: 1189–1198. [PMC free article] [PubMed] [Google Scholar] |
[36] | Pal R., Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res. Clin. Pract. 2020; 162: 108132. doi: 10.1016/j.diabres.2020.108132. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[37] | Esler M., Esler D. Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? J. Hypertens. 2020; 38: 781–782. doi: 10.1097/HJH.0000000000002450. [PubMed] [CrossRef] [Google Scholar] |
[38] | Romaní-Pérez M., Outeiriño-Iglesias V., Moya C.M., Santisteban P., González-Matías L.C., Vigo E., Mallo F. Activation of the GLP-1 Receptor by Liraglutide Increases ACE2 Expression, Reversing Right Ventricle Hypertrophy, and Improving the Production of SP-A and SP-B in the Lungs of Type 1 Diabetes Rats. Endocrinology. 2015; 156: 3559-3569. doi: 10.1210/en.2014-1685. [PubMed] [CrossRef] [Google Scholar] |
[39] | Zhang W., Li C., Liu B., Wu R., Zou N., Xu Y.-Z., Yang Y.-Y., Zhang F., Zhou H.-M., Wan K.-Q. Pioglitazone upregulates hepatic angiotensin converting enzyme 2 expression in rats with steatohepatitis. Ann. Hepatol. 2013; 12: 892–900. doi: 10.1016/S1665-2681(19)31294-3. [PubMed] [CrossRef] [Google Scholar] |
[40] | Ali R.M., Al-Shorbagy M.Y., Helmy M.W., El-Abhar H.S. Role of Wnt4/β-catenin, Ang II/TGFβ, ACE2, NF-κB, and IL-18 in attenuating renal ischemia/reperfusion-induced injury in rats treated with Vit D and pioglitazone. Eur. J. Pharmacol. 2018; 831: 68–76. doi: 10.1016/j.ejphar.2018.04.032. [PubMed] [CrossRef] [Google Scholar] |
[41] | Viswanathan V., Puvvula A., Jamthikar A.D., Saba L., MJohri A., Kotsis V., Khanna N.N., KDhanjil S., Majhail M., Prasanna Misra D., et al. Bidirectional link between diabetes mellitus and coronavirus disease 2019 leading to cardiovascular disease: A narrative review. World J. Diabetes. 2021; 12: 215–237. doi: 10.4239/wjd.v12.i3.215. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[42] | Knapp S. Diabetes and infection: Is there a link?—A mini-review. Gerontology. 2013; 59: 99–104. doi: 10.1159/000345107. [PubMed] [CrossRef] [Google Scholar] |
[43] | Moutschen M., Scheen A., Lefebvre P. Impaired immune responses in diabetes mellitus: Analysis of the factors and mechanisms involved. Relevance to the increased susceptibility of diabetic patients to specific infections. Diabete Metab. 1992; 18: 187. [PubMed] [Google Scholar] |
[44] | Geerlings S.E., Hoepelman A.I. Immune dysfunction in patients with diabetes mellitus (DM) FEMS Immunol. Med. Microbiol. 1999; 26: 259–265. doi: 10.1111/j.1574-695X.1999.tb01397.x. [PubMed] [CrossRef] [Google Scholar] |
[45] | Fernandez C., Rysä J., Almgren P., Nilsson J., Engström G., Orho-Melander M., Ruskoaho H., Melander O. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J. Intern. Med. 2018; 284: 377–387. doi: 10.1111/joim.12783. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[46] | Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181: 271–280. doi: 10.1016/j.cell.2020.02.052. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |
[47] | Huang J., Xiao Y., Zheng P., Zhou W., Wang Y., Huang G., Xu A., Zhou Z. Distinct neutrophil counts and functions in newly diagnosed type 1 diabetes, latent autoimmune diabetes in adults, and type 2 diabetes. Diabetes Metab. Res. Rev. 2019; 35: 30–64. doi: 10.1002/dmrr.3064. [PubMed] [CrossRef] [Google Scholar]. |