[1] | A. A. Alghobashy et al., “B2 adrenergic receptor gene polymorphism effect on childhood asthma severity and response to treatment,” Pediatric Research, vol. 83, no. 3, pp. 597–605, 2018. |
[2] | A. Antczak et al., “Analysis of changes in expression of IL-4/IL-13/STAT6 pathway and correlation with the selected clinical parameters in patients with atopic asthma,” Int J Immunopathol Pharmacol, vol. 29, no. 2, pp. 195–204, Jun. 2016, doi: 10.1177/0394632015623794. |
[3] | M. ea Asher et al., “International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods,” European respiratory journal, vol. 8, no. 3, pp. 483–491, 1995. |
[4] | M. Bijanzadeh, P. A. Mahesh, and N. B. Ramachandra, “An understanding of the genetic basis of asthma,” The Indian journal of medical research, vol. 134, no. 2, p. 149, 2011. |
[5] | E. Birben et al., “The genetic variants of thymic stromal lymphopoietin protein in children with asthma and allergic rhinitis,” International archives of allergy and immunology, vol. 163, no. 3, pp. 185–192, 2014. |
[6] | T. Duan, Y. Du, C. Xing, H. Y. Wang, and R.-F. Wang, “Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity,” Front Immunol, vol. 13, p. 812774, 2022, doi: 10.3389/fimmu.2022.812774. |
[7] | P. T. G. Elkington and J. S. Friedland, “Matrix metalloproteinases in destructive pulmonary pathology,” Thorax, vol. 61, no. 3, pp. 259–266, Mar. 2006, doi: 10.1136/thx.2005.051979. |
[8] | T. M. Gunn, A. Azarani, P. H. Kim, R. W. Hyman, R. W. Davis, and G. S. Barsh, “[No title found],” BMC Genet, vol. 3, no. 1, p. 2, 2002, doi: 10.1186/1471-2156-3-2. |
[9] | B. Hanson, M. McGue, B. Roitman-Johnson, N. L. Segal, T. J. Bouchard Jr, and M. N. Blumenthal, “Atopic disease and immunoglobulin E in twins reared apart and together.,” American journal of human genetics, vol. 48, no. 5, p. 873, 1991. |
[10] | S.-J. Hong et al., “TNF-α (- 308 G/A) and CD14 (- 159T/C) polymorphisms in the bronchial responsiveness of Korean children with asthma,” Journal of allergy and clinical immunology, vol. 119, no. 2, pp. 398–404, 2007. |
[11] | K. P. Hough et al., “Airway Remodeling in Asthma,” Front Med (Lausanne), vol. 7, p. 191, 2020, doi: 10.3389/fmed.2020.00191. |
[12] | G. M. Hynes and T. S. C. Hinks, “The role of interleukin-17 in asthma: a protective response?,” ERJ Open Res, vol. 6, no. 2, pp. 00364–02019, Apr. 2020, doi: 10.1183/23120541.00364-2019. |
[13] | A. Imraish, T. Abu-Thiab, and M. Zihlif, “IL-13 and FOXO3 genes polymorphisms regulate IgE levels in asthmatic patients,” Biomed Rep, vol. 14, no. 6, p. 55, Jun. 2021, doi: 10.3892/br.2021.1431. |
[14] | S. K. Jindal, “Genetic basis of asthma,” Indian J Med Res, vol. 142, no. 6, pp. 640–643, Dec. 2015, doi: 10.4103/0971-5916.174537. |
[15] | T. Kawai and S. Akira, “The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors,” Nat Immunol, vol. 11, no. 5, pp. 373–384, May 2010, doi: 10.1038/ni.1863. |
[16] | S. Kazani, M. E. Wechsler, and E. Israel, “The role of pharmacogenomics in improving the management of asthma,” J Allergy Clin Immunol, vol. 125, no. 2, pp. 295–302; quiz 303–304, Feb. 2010, doi: 10.1016/j.jaci.2009.12.014. |
[17] | M. Kerkhof et al., “Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma,” Thorax, vol. 65, no. 8, pp. 690–697, 2010. |
[18] | K. W. Kim and C. Ober, “Lessons Learned From GWAS of Asthma,” Allergy Asthma Immunol Res, vol. 11, no. 2, pp. 170–187, Mar. 2019, doi: 10.4168/aair.2019.11.2.170. |
[19] | S.-Q. Liang et al., “Beta-2 adrenergic receptor (ADRB2) gene polymorphisms and the risk of asthma: a meta-analysis of case-control studies,” PLoS One, vol. 9, no. 8, p. e104488, 2014, doi: 10.1371/journal.pone.0104488. |
[20] | F. D. Martinez, “CD14, endotoxin, and asthma risk: actions and interactions,” Proc Am Thorac Soc, vol. 4, no. 3, pp. 221–225, Jul. 2007, doi: 10.1513/pats.200702-035AW. |
[21] | M. Moniuszko, A. Bodzenta-Lukaszyk, K. Kowal, D. Lenczewska, and M. Dabrowska, “Enhanced frequencies of CD14++CD16+, but not CD14+CD16+, peripheral blood monocytes in severe asthmatic patients,” Clinical Immunology, vol. 130, no. 3, pp. 338–346, Mar. 2009, doi: 10.1016/j.clim.2008.09.011. |
[22] | M. C. Nawijn, A. C. Motta, R. Gras, S. Shirinbak, H. Maazi, and A. J. M. van Oosterhout, “TLR-2 activation induces regulatory T cells and long-term suppression of asthma manifestations in mice,” PLoS One, vol. 8, no. 2, p. e55307, 2013, doi: 10.1371/journal.pone.0055307. |
[23] | C. Ober, “Asthma Genetics in the Post-GWAS Era,” Ann Am Thorac Soc, vol. 13 Suppl 1, no. Suppl 1, pp. S85-90, Mar. 2016, doi: 10.1513/AnnalsATS.201507-459MG. |
[24] | M. Omraninava, M. M. Eslami, S. Aslani, B. Razi, D. Imani, and S. Feyzinia, “Interleukin 13 gene polymorphism and susceptibility to asthma: a meta-regression and meta-analysis,” Eur Ann Allergy Clin Immunol, vol. 54, no. 4, pp. 150–167, Jul. 2022, doi: 10.23822/EurAnnACI.1764-1489.180. |
[25] | P. Pahwa, C. P. Karunanayake, D. C. Rennie, Y. Chen, D. A. Schwartz, and J. A. Dosman, “Association of the TLR4 Asp299Gly polymorphism with lung function in relation to body mass index,” BMC Pulm Med, vol. 9, p. 46, Sep. 2009, doi: 10.1186/1471-2466-9-46. |
[26] | L. J. Palmer and W. O. Cookson, “Genomic approaches to understanding asthma,” Genome research, vol. 10, no. 9, pp. 1280–1287, 2000. |
[27] | F. Sahin, P. Yıldız, A. Kuskucu, M. A. Kuskucu, N. Karaca, and K. Midilli, “The effect of CD14 and TLR4 gene polymorphisms on asthma phenotypes in adult Turkish asthma patients: a genetic study,” BMC Pulm Med, vol. 14, p. 20, Feb. 2014, doi: 10.1186/1471-2466-14-20. |
[28] | M. Sahu and J. G. Prasuna, “Twin Studies: A Unique Epidemiological Tool,” Indian J Community Med, vol. 41, no. 3, pp. 177–182, 2016, doi: 10.4103/0970-0218.183593. |
[29] | S. A. Shaban, S. A. Brakhas, and A. H. Ad’hiah, “Association of interleukin-17A genetic polymorphisms with risk of asthma: A case-control study in Iraqi patients,” Meta Gene, vol. 29, p. 100935, 2021. |
[30] | E. K. Silverman et al., “Family-based association analysis of beta2-adrenergic receptor polymorphisms in the childhood asthma management program,” J Allergy Clin Immunol, vol. 112, no. 5, pp. 870–876, Nov. 2003, doi: 10.1016/s0091-6749(03)02023-2. |
[31] | R. E. Slager, G. A. Hawkins, X. Li, D. S. Postma, D. A. Meyers, and E. R. Bleecker, “Genetics of asthma susceptibility and severity,” Clin Chest Med, vol. 33, no. 3, pp. 431–443, Sep. 2012, doi: 10.1016/j.ccm.2012.05.005. |
[32] | S. F. Thomsen, “Genetics of asthma: an introduction for the clinician,” European clinical respiratory journal, vol. 2, no. 1, p. 24643, 2015. |
[33] | S. F. Thomsen, “The contribution of twin studies to the understanding of the aetiology of asthma and atopic diseases,” Eur Clin Respir J, vol. 2, p. 27803, 2015, doi: 10.3402/ecrj.v2.27803. |
[34] | S. F. Thomsen, “The contribution of twin studies to the understanding of the aetiology of asthma and atopic diseases,” Eur Clin Respir J, vol. 2, p. 27803, 2015, doi: 10.3402/ecrj.v2.27803. |
[35] | S. F. Thomsen, “Exploring the origins of asthma: Lessons from twin studies,” Eur Clin Respir J, vol. 1, no. Suppl 1, 2014, doi: 10.3402/ecrj.v1.25535. |
[36] | A. I. Tiotiu et al., “Impact of Air Pollution on Asthma Outcomes,” Int J Environ Res Public Health, vol. 17, no. 17, p. 6212, Aug. 2020, doi: 10.3390/ijerph17176212. |
[37] | P. Tripathi, S. Awasthi, and P. Gao, “ADAM metallopeptidase domain 33 (ADAM33): a promising target for asthma,” Mediators Inflamm, vol. 2014, p. 572025, 2014, doi: 10.1155/2014/572025. |
[38] | P. Tripathi, S. Awasthi, N. Husain, R. Prasad, and V. Mishra, “Increased expression of ADAM33 protein in asthmatic patients as compared to non-asthmatic controls,” Indian J Med Res, vol. 137, no. 3, pp. 507–514, Mar. 2013. |
[39] | Y.-H. Wang and M. Wills-Karp, “The potential role of interleukin-17 in severe asthma,” Curr Allergy Asthma Rep, vol. 11, no. 5, pp. 388–394, Oct. 2011, doi: 10.1007/s11882-011-0210-y. |
[40] | S. Xu and X. Cao, “Interleukin-17 and its expanding biological functions,” Cell Mol Immunol, vol. 7, no. 3, pp. 164–174, May 2010, doi: 10.1038/cmi.2010.21. |
[41] | F. Yan, Y. Hao, X. Gong, H. Sun, J. Ding, and J. Wang, “Silencing a disintegrin and metalloproteinase‑33 attenuates the proliferation of vascular smooth muscle cells via PI3K/AKT pathway: Implications in the pathogenesis of airway vascular remodeling,” Mol Med Rep, vol. 24, no. 1, p. 502, Jul. 2021, doi: 10.3892/mmr.2021.12141. |
[42] | T. Yoshinaka et al., “Identification and characterization of novel mouse and human ADAM33s with potential metalloprotease activity,” Gene, vol. 282, no. 1–2, pp. 227–236, 2002. |
[43] | R. Zhang, R. Deng, H. Li, and H. Chen, “No Association Between −159C/T Polymorphism of the CD14 Gene and Asthma Risk: a Meta-Analysis of 36 Case-Control Studies,” Inflammation, vol. 39, no. 1, pp. 457–466, Feb. 2016, doi: 10.1007/s10753-015-0269-z. |
[44] | S. Zhang, Y. Li, and Y. Liu, “Interleukin-4 -589C/T Polymorphism is Associated with Increased Pediatric Asthma Risk: A Meta-Analysis,” Inflammation, vol. 38, no. 3, pp. 1207–1212, 2015, doi: 10.1007/s10753-014-0086-9. |
[45] | L. Zhao and M. B. Bracken, “Association of CD14-260 (-159) C> Tand asthma: a systematic review and meta-analysis,” BMC medical genetics, vol. 12, no. 1, pp. 1–10, 2011. |
[46] | T. Zhou et al., “Association of plasma soluble CD14 level with asthma severity in adults: a case control study in China,” Respir Res, vol. 20, no. 1, p. 19, Dec. 2019, doi: 10.1186/s12931-019-0987-0. |
[47] | L. Zuo, K. Lucas, C. A. Fortuna, C.-C. Chuang, and T. M. Best, “Molecular Regulation of Toll-like Receptors in Asthma and COPD,” Front Physiol, vol. 6, p. 312, 2015, doi: 10.3389/fphys.2015.00312. |
[48] | Y. H. Zhang et al., “Pulmonary surfactant synthesis in miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the CRISPR/Cas9 system,” Am J Transl Res, vol. 9, no. 2, pp. 355–365, Feb. 2017. |
[49] | J. Zhang et al., “Regulatory T cells, a viable target against airway allergic inflammatory responses in asthma,” Frontiers in Immunology, vol. 13, p. 902318, 2022. |
[50] | T. Zhu, A. P. Brown, L. P. Cai, G. Quon, and H. Ji, “Single-cell RNA-seq analysis reveals lung epithelial cell type-specific responses to HDM and regulation by Tet1,” Genes, vol. 13, no. 5, p. 880, 2022. |