[1] | Warlow, C.; Sudlow, C.; Dennis, M.; Wardlaw, J.; Sandercock, P. Stroke. Lancet 2003, 362, 1211–1224. |
[2] | Writing Group Members; Lloyd-Jones, D.; Adams, R.J.; Brown, T.M.; Carnethon, M.; Dai, S.; de Simone, G.; Ferguson, T.B.; Ford, E.; Furie, K.; et al. Heart disease and stroke statistics—2010 Update: A report from the american heart association. Circulation 2010, 121, e46–e215. |
[3] | Jin, R.; Yang, G.; Li, G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. J. Leukoc. Biol. 2010, 87, 779–789. |
[4] | Petrovic-Djergovic, D.; Goonewardena, S.N.; Pinsky, D.J. Inflammatory disequilibrium in stroke. Circ. Res.2016, 119, 142–158. |
[5] | Hallenbeck JM. Significance of the inflammatory response in brain ischemia. Acta Neurochir Suppl 1996; 66: 27–31. |
[6] | Bowes MP, Rothlein R, Fagan SC, Zivin JA. Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy. Neurology 1995; 45: 815–819. |
[7] | Chopp M, Li Y, Jiang N, Zhang RL, Prostak J. Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J Cereb Blood Flow Metab 1996; 16: 578– 584. |
[8] | Clark WM, Lauten JD, Lessov N, Woodward W, Coull BM. The influence of antiadhesion therapies on leukocyte subset accumulation in central nervous system ischemia in rats. J Mol Neurosci 1995; 6: 43– 50. |
[9] | Yenari MA, Kunis D, Sun GH, Onley D, Watson L, Turner S, Whitaker S, Steinberg GK. Hu23F2G, an antibody recognizing the leukocyte CD11/CD18 integrin, reduces injury in a rabbit model of transient focal cerebral ischemia. Exp Neurol 1998; 153: 223–233. |
[10] | Hartl R, Schurer L, Schmid-Schonbein GW, del Zoppo GJ. Experimental antileukocyte interventions in cerebral ischemia. J Cereb Blood Flow Metab 1996; 16: 1108–1119. |
[11] | Zheng Z, Yenari MA. Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 2004; 26: 884–892. |
[12] | Li GZ, Zhong D, Yang LM, Sun B, Zhong ZH, Yin YH, Cheng J, Yan BB, Li HL. Expression of interleukin-17 in ischemic brain tissue. Scand J Immunol 2005; 62: 481–486. |
[13] | Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel-Poore MP. The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res 2002; 932: 110–119. |
[14] | Becker K, Kindrick D, Relton J, Harlan J, Winn R. Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke 2001; 32: 206–211. |
[15] | Nadareishvili ZG, Li H, Wright V, Maric D, Warach S, Hallenbeck JM, Dambrosia J, Barker JL, Baird AE. Elevated pro-inflammatory CD4+CD28- lymphocytes and stroke recurrence and death. Neurology 2004; 63: 1446–1451. |
[16] | Dinkel K, Dhabhar FS, Sapolsky RM. Neurotoxic effects of polymorphonuclear granulocytes on hippocampal primary cultures. Proc Natl Acad Sci U S A 2004; 101: 331–336. |
[17] | Jin, R.; Yang, G.; Li, G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. J. Leukoc. Biol. 2010, 87, 779–789. |
[18] | Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005, 8, 752–758. |
[19] | Prinz, M.; Priller, J. Microglia and brain macrophages in the molecular age: From origin to neuropsychiatric disease. Nat. Rev. Neurosci. 2014, 15, 300–312. |
[20] | Breckwoldt, M.O.; Chen, J.W.; Stangenberg, L.; Aikawa, E.; Rodriguez, E.; Qiu, S.; Moskowitz, M.A.; Weissleder, R. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc. Natl. Acad. Sci. USA 2008, 105, 18584–18589. |
[21] | Kaito, M.; Araya, S.; Gondo, Y.; Fujita, M.; Minato, N.; Nakanishi, M.; Matsui, M. Relevance of distinct monocyte subsets to clinical course of ischemic stroke patients. PLoS ONE 2013, 8, e69409. |
[22] | Perego, C.; Fumagalli, S.; de Simoni, M.G. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflamm. 2011, 8, 174. |
[23] | Benveniste EN. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 1998; 9: 259– 275, 1998. |
[24] | Che X, Ye W, Panga L, Wu DC, Yang GY. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res 2001; 902: 171–177. |
[25] | Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia 2005; 50: 427–434. |
[26] | Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: Friend and foe for ischemic stroke. J. Neuroinflamm. 2019, 16, 142. |
[27] | Iadecola C, Anrather J: The immunology of stroke: from mechanisms to translation. Nat Med 2011; 17: 796-808. |
[28] | Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D: Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 2011; 10: 471-480. |
[29] | Cerwenka A, Lanier LL: Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol 2016; 16: 112-123. |
[30] | Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S: Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331: 44-49. |
[31] | Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T: Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009; 40: 1849-1857. |
[32] | Zhang Y, Gao Z, Wang D, Zhang T, Sun B, Mu L, Wang J, Liu Y, Kong Q, Liu X, Zhang Y, Zhang H, He J, Li H, Wang G: Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10. J Neuroinflammation 2014; 11: 79. |
[33] | Gan Y, Liu Q, Wu W, Yin JX, Bai XF, Shen R, Wang Y, Chen J, La Cava A, Poursine-Laurent J, Yokoyama W, Shi FD: Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci U S A 2014; 111: 2704-2709. |
[34] | Xu, S.; Lu, J.; Shao, A.; Zhang, J.H.; Zhang, J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front. Immunol. 2020, 11, 294. |
[35] | Jiang, C.; Wu, W.; Deng, Y.; Ge, J. Modulators of microglia activation and polarization in ischemic stroke (Review). Mol. Med. Rep. 2020, 21, 2006–2018. |
[36] | Zhang JM and An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007; 45: 27–37. |
[37] | Murray, K.N.; Parry-Jones, A.R.; Allan, S.M. Interleukin-1 and acute brain injury. Front. Cell. Neurosci. 2015, 9, 18. |
[38] | Luheshi, N.M.; Kovacs, K.J.; Lopez-Castejon, G.; Brough, D.; Denes, A. Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J. Neuroinflamm. 2011, 8, 186. |
[39] | Herx, L.M.; Yong, V.W. Interleukin-1β is required for the early evolution of reactive astrogliosis following CNS lesion. J. Neuropathol. Exp. Neurol. 2001, 60, 961–971. |
[40] | Thornton, P.; Pinteaux, E.; Allan, S.M.; Rothwell, N.J. Matrix metalloproteinase-9 and urokinase plasminogen activator mediate interleukin-1-induced neurotoxicity. Mol. Cell. Neurosci. 2008, 37, 135–142. |
[41] | Allen, C.; Thornton, P.; Denes, A.; McColl, B.W.; Pierozynski, A.; Monestier, M.; Pinteaux, E.; Rothwell, N.J.; Allan, S.M. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J. Immunol. 2012, 189, 381–392. |
[42] | Gadani SP, Cronk JC, Norris GT, et al. Interleukin-4: a cytokine to remember. J Immunol 2013; 189: 4213–4219 |
[43] | Kim HM, Shin HY, Jeong HJ, et al. Reduced IL-2 but elevated IL-4, IL-6, and IgE serum levels in patients with cerebral infarction during the acute stage. J Mol Neurosci 2000; 14: 191–196. |
[44] | Zhao X, Wang H, Sun G, et al. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci 2015; 35: 11281–11291. |
[45] | Clark WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, Eckenstein F. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 2000; 31: 1715–1720. |
[46] | Herrmann O, Tarabin V, Suzuki S, Attigah N, Coserea I, Schneider A, Vogel J, Prinz S, Schwab S, Monyer H, Brombacher F, Schwaninger M. Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia. J Cereb Blood Flow Metab 2003; 23: 406–415. |
[47] | Rallidis LS, Vikelis M, Panagiotakos DB, Rizos I, Zolindaki MG, Kaliva K, Kremastinos DT. Inflammatory markers and in-hospital mortality in acute ischaemic stroke. Atherosclerosis. 2005. |
[48] | Emsley HC, Smith CJ, Georgiou RF, Vail A, Hopkins SJ, Rothwell NJ, Tyrrell PJ. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry 2005; 76: 1366–1372. |
[49] | Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Freund GG, Dantzer R, Kelley KW. Interleukin-10 in the brain. Crit Rev Immunol 2001; 21: 427–449. |
[50] | Spera PA, Ellison JA, Feuerstein GZ, Barone FC. IL-10 reduces rat brain injury following focal stroke. Neurosci Lett 1998; 251: 189–192. |
[51] | Ooboshi H, Ibayashi S, Shichita T, Kumai Y, Takada J, Ago T, Arakawa S, Sugimori H, Kamouchi M, Kitazono T, Iida M. Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 2005; 111: 913–919. |
[52] | Pelidou SH, Kostulas N, Matusevicius D, Kivisakk P, Kostulas V, Link H. High levels of IL-10 secreting cells are present in blood in cerebrovascular diseases. Eur J Neurol 1999; 6: 437–442. |
[53] | Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, Tarkowski A. Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin Exp Immunol 1997; 110: 492– 499. |
[54] | 54. van Exel E, Gussekloo J, de Craen AJ, Bootsma-van der Wiel A, Frolich M, Westendorp RG. Inflammation and stroke: the Leiden 85-Plus Study. Stroke 2002; 33: 1135–1138. |
[55] | Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, Feuerstein GZ. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 1994; 25: 1481–1488. |
[56] | Murakami Y, Saito K, Hara A, Zhu Y, Sudo K, Niwa M, Fujii H, Wada H, Ishiguro H, Mori H, Seishima M. Increases in tumor necrosis factor-alpha following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus. J Neurochem 2005; 93: 1616–1622. |
[57] | Uno H, Matsuyama T, Akita H, Nishimura H, Sugita M. Induction of tumor necrosis factor-alpha in the mouse hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 1997; 17: 491–499. |
[58] | Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 2006;26:654–665 |
[59] | Hallenbeck JM. The many faces of tumor necrosis factor in stroke. Nat Med 2002; 8. |
[60] | Yang GY, Gong C, Qin Z, Ye W, Mao Y, Bertz AL. Inhibition of TNF alpha attenuates infarct volume and ICAM-1 expression in ischemic mouse brain. Neuroreport 1998; 9: 2131–2134. |
[61] | Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, Lysko PG, Feuerstein GZ. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke 1997; 28: 1233–1244. |
[62] | Ginis I, Jaiswal R, Klimanis D, Liu J, Greenspon J, Hallenbeck JM. TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. J Cereb Blood Flow Metab 2002; 22: 142–152. |
[63] | Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 1996; 2: 788–794. |
[64] | Thompson, D.; Pepys, M.B.; Wood, S.P. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999, 7, 169–177. |
[65] | Mengozzi, M.; Kirkham, F.A.; Girdwood, E.E.R.; Bunting, E.; Drazich, E.; Timeyin, J.; Ghezzi, P.; Rajkumar, C. C-Reactive Protein Predicts Further Ischemic Events in Patients with Transient Ischemic Attack or Lacunar Stroke. Front. Immunol. 2020, 11, 1403. |
[66] | Yu, B.; Yang, P.; Xu, X.; Shao, L. C-reactive protein for predicting all-cause mortality in patients with acute ischemic stroke: A meta-analysis. Biosci. Rep. 2019, 39. |
[67] | Bonaventura, A.; Liberale, L.; Vecchié, A.; Casula, M.; Carbone, F.; Dallegri, F.; Montecucco, F. Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke. Int. J. Mol. Sci. 2016, 17, 1967. |
[68] | Tian, D.; Zhang, S.; He, X.; Liu, H. Serum procalcitonin as a diagnostic marker in acute ischemic stroke. NeuroReport 2015, 26, 33–37. |
[69] | He, D.; Zhang, Y.; Zhang, B.; Jian, W.; Deng, X.; Yang, Y.; Xiao, T.; Yu, H.; Wen, S.; Huang, K. Serum Procalcitonin Levels are Associated with Clinical Outcome in Intracerebral Hemorrhage. Cell. Mol. Neurobiol. 2017, 38, 727–733. |
[70] | Deng, S.; Gao, J.; Zhao, Z.; Tian, M.; Li, Y.; Gong, Y. Albumin/Procalcitonin Ratio Is a Sensitive Early Marker of Nosocomial Blood Stream Infection in Patients with Intra-Cerebral Hemorrhage. Surg. Infect. 2019, 20, 643–649. |
[71] | L. Jing, J. Wang, J. Zhang, C. Cao, Y. Chang, J. Dong, F. Guo, P.A. Li, Upregulation of ICAM-1 in diabetic rats after transient forebrain ischemia and reperfusion injury, J. Inflamm. 11 (35) (2014) 1–11. |
[72] | C.J.M. Frijns, L.J. Kappelle, Inflammatory cell adhesion molecules in ischemic cerebrovascular disease, Stroke 33 (8) (Aug. 2002) 2115–2122. |
[73] | V. Supanc, Z. Biloglav, V.B. Kes, V. Demarin, Role of cell adhesionmolecules in acute ischemic stroke, Ann. Saudi Med. 31 (4) (2011) 365–370. |
[74] | C.J.M. Frijns, L.J. Kappelle, Inflammatory cell adhesion molecules in ischemic cerebrovascular disease, Stroke 33 (8) (Aug. 2002) 2115–2122. |
[75] | J. Cao, X. Shi, W. Li, J. Liu, X. Miao, J. Xu, Protective effect of anti-intercellular adhesion molecule-1 antibody on global cerebral ischemia/reperfusion injury in the rat, Biosci. Trends 3 (2) (2009) 48–52. |
[76] | E.S. Connolly, C.J. Winfree, T.A. Springer, Y. Naka, H. Liao, S.D. Yan, D.M. Stern, R.A. Solomon, D.J. Pinsky, Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion role of neutrophil adhesion in the pathogenesis of stroke, J. Clin. Invest. 97 (1) (1996) 209–216. |
[77] | EAST, Use of anti-ICAM-1 therapy in ischemic stroke results of the Enlimomab Acute Stroke Trial, Neurology 57 (2001) 1428–1434. |
[78] | R. Brondani, C.R.M. Rieder, D. Valente, L.F. Araújo, N. Clausell, Levels of vascular cell adhesion molecule-1 and endothelin-1 in ischemic stroke: a longitudinal prospective study, Clin. Biochem. 40 (2007) 282–284. |
[79] | A. Papayianni, E. Alexopoulos, P. Giamalis, L. Gionanlis, A. Belechri, P. Koukoudis, D.Memmos, Circulating levels of ICAM-1, VCAM-1, and MCP-1 are increased in haemodialysis patients: association with inflammation, dyslipidaemia, and vascular events, Nephrol. Dial. Transplant. 17 (2002) 435–441. |
[80] | T.L. Deem, J.M. Cook-mills, Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species, Blood 104 (8) (2009) 2385–2393. |
[81] | D. Zhang, D. Yuan, J. Shen, Y. Yan, C. Gong, J. Gu, H. Xue, Y. Qian,W. Zhang, X. He, L. Yao, Y. Ji, A. Shen, Up-regulation of VCAM1 relates to neuronal apoptosis after intracerebral hemorrhage in adult rats, Neurochem. Res. (Apr. 2015). |