[1] | Abdulnour, R. E. et al. (2018). Early intravascular events are associated with development of acute respiratory distress syndrome. A substudy of the LIPS-A clinical trial. Am. J. Respir. Crit. Care Med. 197, 1575–1585. |
[2] | Afshar, M. et al. (2018). Injury characteristics and von Willebrand Factor for the prediction of acute respiratory distress syndrome in patients with burn injury: development and internal validation. Ann. Surg. https://doi.org/10.1097/SLA.0000000000002795. |
[3] | Agrawal, A. et al. (2013). Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am. J. Respir. Crit. Care Med. 187, 736–742. |
[4] | Ahmed, A. H. et al. (2014). The role of potentially preventable hospital exposures in the development of acute respiratory distress syndrome: a population-based study. Crit. Care Med. 42, 31–39. |
[5] | Albert, R. K. (2012). The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 185, 702–708. |
[6] | Albertine, K. H. et al. (2002). Fas and fas ligand are upregulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Pathol. 161, 1783–1796. |
[7] | Amato, M. B. et al. (2015). Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 372, 747–755. |
[8] | Amato, M.B.; Meade, M.O.; Slutsky, A.S.; Brochard, L.; Costa, E.L.; Schoenfeld, D.A.; Stewart, T.E.; Briel, M.; Talmor, D.; Mercat, A.; et al. (2015). Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med., 372, 747–755. [CrossRef] [PubMed] |
[9] | Andrews, P.L.; Sadowitz, B.; Kollisch-Singule, M.; Satalin, J.; Roy, S.; Snyder, K.; Gatto, L.A.; Nieman, G.F.; Habashi, N.M. (2015). Alveolar instability (atelectrauma) is not identifified by arterial oxygenation predisposing the development of an occult ventilator-induced lung injury. Intensive Care Med. Exp., 3, 1–12. |
[10] | Angus, D. C. et al. (2001). Quality-adjusted survival in the first year after the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 163, 1389–1394. |
[11] | Antonelli, M. et al. (1998). A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N. Engl. J. Med. 339, 429–435. |
[12] | Ashbaugh, D. G., Bigelow, D. B., Petty, T. L. & Levine, B. E. (1967). Acute respiratory distress in adults. Lancet 2, 319–323. |
[13] | Azoulay, E. et al. (2017). Recovery after critical illness: putting the puzzle together-a consensus of 29. Crit. Care 21, 296. |
[14] | Azoulay, E. et al. (2018). Effect of high-flow nasal oxygen versus standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial. JAMA 320, 2099–2107. |
[15] | Bachofen, M. & Weibel, E. R. (1977). Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am. Rev. Respir. Dis. 116, 589–615. |
[16] | Bachofen, M. & Weibel, E. R. (1982). Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin. Chest Med. 3, 35–56. |
[17] | Bastarache, J. A., Fremont, R. D., Kropski, J. A., Bossert, F. R. & Ware, L. B. (2009). Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L1035–L1041. |
[18] | Bateman, S. T. et al. (2016). Early high-frequency oscillatory ventilation in pediatric acute respiratory failure. A propensity score analysis. Am. J. Respir. Crit. Care Med. 193, 495–503. |
[19] | Baydur, A.; Behrakis, P.K.; Zin, W.A.; Jaeger, M.; Milic-Emili, J. (1982). A simple method for assessing the validity of the esophageal balloon technique. Am. Rev. Respir. Dis., 126, 788–791. |
[20] | Bein, T. et al. (2013). Lower tidal volume strategy (approximately 3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med. 39, 847–856. |
[21] | Beitler, J. R. et al. (2014). Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis. Intensive Care Med. 40, 332–341. |
[22] | Beitler, J. R. et al. (2016). Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATH criteria. Intensive Care Med. 42, 1427–1436. |
[23] | Beitler, J. R. et al. (2016). Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome. Crit. Care Med. 44, 91–99. |
[24] | Beitler, J. R. et al. EPVent-2 Study Group. (2019). Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy versus an empiric high PEEP-FiO2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA, 321(9): 846-857. doi:10.1001/jama.2019.0555. |
[25] | Beitler, J. R., Owens, R. L. & Malhotra, A. (2016). Unmasking a role for noninvasive ventilation in early acute respiratory distress syndrome. JAMA 315, 2401–2403. |
[26] | Bellani, G. et al. (2016). Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315, 788–800. |
[27] | Bellani, G. et al. (2017). Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE Study. Am. J. Respir. Crit. Care Med. 195, 67–77. |
[28] | Bellani, G.; Laffffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; Van Haren, F.; Larsson, A.; McAuley, D.F.; et al. (2016). Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA, 315, 788–800. |
[29] | Bernard, G. R. et al. (1994). The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med. 149, 818–824. |
[30] | Bhattacharya, J. & Matthay, M. A. (2013). Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu. Rev. Physiol. 75, 593–615. |
[31] | Bindl, L. et al. (2003). Gender-based differences in children with sepsis and ARDS: the ESPNIC ARDS Database Group. Intensive Care Med. 29, 1770–1773. |
[32] | Bos, L. D. et al. (2019). Understanding heterogeneity in biological phenotypes of ARDS by leukocyte expression profiles. Am. J. Respir. Crit. Care Med., 200(1): 42-50. https://doi.org/10.1164/rccm.201809-1808OC. |
[33] | Boyle, A. J. et al. (2018). Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respir. Med. 6, 874–884. |
[34] | Boyle, A. J. et al. (2018). Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database. Crit. Care 22, 268. |
[35] | Brauer, R. et al. (2016). Syndecan-1 attenuates lung injury during influenza infection by potentiating c-Met signaling to suppress epithelial apoptosis. Am. J. Respir. Crit. Care Med. 194, 333–344. |
[36] | Briel, M. et al. (2010). Higher versus lower positive endexpiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303, 865–873. |
[37] | Brigham, K. L., Woolverton, W. C., Blake, L. H. & Staub, N. C. Increased sheep lung vascular permeability caused by pseudomonas bacteremia. J. Clin. Invest. 54, 792–804 (1974). |
[38] | Brochard, L., Slutsky, A. & Pesenti, A. (2017). Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am. J. Respir. Crit. Care Med. 195, 438–442. |
[39] | Broermann, A. et al. (2011). Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J. Exp. Med. 208, 2393–2401. |
[40] | Brower, R. G. et al. (2000). Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342, 1301–1308. |
[41] | Brower, R.G.; Lanken, P.N.; MacIntyre, N.; Matthay, M.A.; Morris, A.; Ancukiewicz, M.; Schoenfeld, D.; Thompson, B.T.; The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. (2004). Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med., 351, 327–336. |
[42] | Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. and Acute Respiratory Distress Syndrome Network. (2000). Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med., 342, 1301–1308. |
[43] | Budinger, G. R. et al. (2011). Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am. J. Respir. Crit. Care Med. 183, 1043–1054. |
[44] | Caironi, P.; Cressoni, M.; Chiumello, D.; Ranieri, M.; Quintel, M.; Russo, S.G.; Cornejo, R.; Bugedo, G.; Carlesso, E.; Russo, R.; et al. (2010). Lung opening and closing during ventilation of acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 181, 578–586. [CrossRef] |
[45] | Calfee, C. S. & Matthay, M. A. (2007). Non-ventilatory treatments for acute lung injury and ARDS. Chest 131, 913–920. |
[46] | Calfee, C. S. et al. (2008). Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax 63, 1083–1089. |
[47] | Calfee, C. S. et al. (2011). Active and passive cigarette smoking and acute lung injury after severe blunt trauma. Am. J. Respir. Crit. Care Med. 183, 1660–1665. |
[48] | Calfee, C. S. et al. (2014). Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2, 611–620. |
[49] | Calfee, C. S. et al. (2015). Cigarette smoke exposure and the acute respiratory distress syndrome. Crit. Care Med. 43, 1790–1797. |
[50] | Calfee, C. S. et al. (2015). Distinct molecular phenotypes of direct versus indirect ARDS in single-center and multicenter studies. Chest 147, 1539–1548. |
[51] | Calfee, C. S. et al. (2018). Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir. Med. 6, 691–698. |
[52] | Cardinal-Fernandez, P. et al. (2016). The presence of diffuse alveolar damage on open lung biopsy is associated with mortality in patients with acute respiratory distress syndrome: a systematic review and metaanalysis. Chest 149, 1155–1164. |
[53] | Cardinal-Fernandez, P., Lorente, J. A., Ballen-Barragan, A. & Matute-Bello, G. (2017). Acute respiratory distress syndrome and diffuse alveolar damage. New insights on a complex relationship. Ann. Am. Thorac Soc. 14, 844–850. |
[54] | Cavalcanti, A. B. et al. (2017). Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 318, 1335–1345. |
[55] | Cheng, K. T. et al. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J. Clin. Invest. 127, 4124–4135 (2017). |
[56] | Cochi, S. E., Kempker, J. A., Annangi, S., Kramer, M. R. & Martin, G. S. (2016). Mortality trends of acute respiratory distress syndrome in the United States from 1999 to 2013. Ann. Am. Thorac Soc. 13, 1742–1751. |
[57] | Combes, A. et al. (2014). Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am. J. Respir. Crit. Care Med. 190, 488–496. |
[58] | Combes, A. et al. (2018). Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N. Engl. J. Med. 378, 1965–1975. |
[59] | Cong, X., Hubmayr, R. D., Li, C. & Zhao, X. (2017). Plasma membrane wounding and repair in pulmonary diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 312, L371–L391. |
[60] | Corada, M. et al. (1999). Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc. Natl Acad. Sci. USA 96, 9815–9820. |
[61] | Cortegiani, A. et al. (2018). Immunocompromised patients with acute respiratory distress syndrome: secondary analysis of the LUNG SAFE database. Crit. Care 22, 157. |
[62] | Costa, E.L.; Borges, J.B.; Melo, A.; Suarez-Sipmann, F.; Toufen, C., Jr.; Bohm, S.H.; Amato, M.B. (2009). Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med., 35, 1132–1137. [CrossRef] [PubMed] |
[63] | Cressoni, M.; Cadringher, P.; Chiurazzi, C.; Amini, M.; Gallazzi, E.; Marino, A.; Brioni, M.; Carlesso, E.; Chiumello, D.; Quintel, M.; et al. (2014). Lung inhomogeneity in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 189, 149–158. [CrossRef] |
[64] | Davidson, T. A., Caldwell, E. S., Curtis, J. R., Hudson, L. D. & Steinberg, K. P. (1999). Reduced quality of life in survivors of acute respiratory distress syndrome compared with critically ill control patients. JAMA, 281, 354–360. |
[65] | Davies, A. et al. (2009). Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 302, 1888–1895. |
[66] | De Jong, A.; Cossic, J.; Verzilli, D.; Monet, C.; Carr, J.; Conseil, M.; Monnin, M.; Cisse, M.; Belafifia, F.; Molinari, N.; et al. (2018). Impact of the driving pressure on mortality in obese and non-obese ARDS patients: A retrospective study of 362 cases. Intensive Care Med., 44, 1106–1114. [CrossRef] |
[67] | De Luca, D. et al. (2017). The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir. Med. 5, 657–666. |
[68] | de Roulet, A., Burke, R.V., Lim, J., Papillon, S., David W. Bliss, D.W., Ford, H.R., Upperman, J.S., Inaba, K., Jensen, A.R. (2018). Pediatric trauma-associated acute respiratory distress syndrome: incidence, risk factors, and outcomes. J. Pediatr. Surg., 54(7), 1405-1410. https://doi.org/10.1016/j.jpedsurg.2018.07.005. |
[69] | Dellamonica, J.; Lerolle, N.; Sargentini, C.; Beduneau, G.; Di Marco, F.; Mercat, A.; Richard, J.C.; Diehl, J.L.; Mancebo, J.; Rouby, J.J.; et al. (2011). Accuracy and precision of end-expiratory lung-volume measurements by automated nitrogen washout/washin technique in patients with acute respiratory distress syndrome. Crit. Care, 15, R294. [CrossRef] [PubMed] |
[70] | Determann, R. M. et al. (2010). Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit. Care 14, R1. |
[71] | Dial, C. F., Tune, M. K., Doerschuk, C. M. & Mock, J. R. (2017). Foxp3+regulatory T cell expression of keratinocyte growth factor enhances lung epithelial proliferation. Am. J. Respir. Cell Mol. Biol. 57, 162–173. |
[72] | Donnelly, S. C. et al. (1994). Role of selectins in development of adult respiratory distress syndrome. Lancet 344, 215–219. |
[73] | Dos Santos, C. et al. (2016). Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay. A pilot study. Am. J. Respir. Crit. Care Med. 194, 821–830. |
[74] | Dowdy, D. W. et al. (2008). Intensive care unit hypoglycemia predicts depression during early recovery from acute lung injury. Crit. Care Med. 36, 2726–2733. |
[75] | Downs, J. B. & Olsen, G. N. (1974). Pulmonary function following adult respiratory distress syndrome. Chest 65, 92–93. |
[76] | Dreyfuss, D., Soler, P., Basset, G. & Saumon, G. (1988). High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am. Rev. Respir. Dis. 137, 1159–1164. |
[77] | Drusano, G. L. (2011). What are the properties that make an antibiotic acceptable for therapy of communityacquired pneumonia? J. Antimicrob. Chemother. 66 (Suppl. 3), 61–67. |
[78] | Eisner, M. D. et al. (2003). Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 58, 983–988. |
[79] | Ely, E. W. et al. (2004). Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291, 1753–1762. |
[80] | Erickson, S. E. et al. (2009). Racial and ethnic disparities in mortality from acute lung injury. Crit. Care Med. 37, 1–6. |
[81] | Ewald, H. et al. (2015). Adjunctive corticosteroids for Pneumocystis jiroveci pneumonia in patients with HIV infection. Cochrane Database Syst. Rev. 4, CD006150. |
[82] | Famous, K. R. et al. (2017). Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am. J. Respir. Crit. Care Med. 195, 331–338. |
[83] | Fan, E. et al. (2014). Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit. Care Med. 42, 849–859. |
[84] | Fan, E. et al. (2017). An Official American Thoracic Society / European Society of Intensive Care Medicine / Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 195, 1253–1263. |
[85] | Fan, E.; Del Sorbo, L.; Goligher, E.C.; Hodgson, C.L.; Munshi, L.; Walkey, A.J.; Adhikari, N.K.J.; Amato, M.B.P.; Branson, R.; Brower, R.G.; et al. (2017). An offiffifficial American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med., 195, 1253–1263. |
[86] | Fanelli, V. et al. (2016). Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress sindrome. Crit. Care 20, 36. |
[87] | Fang, X., Neyrinck, A. P., Matthay, M. A. & Lee, J. W. (2010). Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J. Biol. Chem. 285, 26211–26222. |
[88] | Fein, A. et al. (1979). The value of edema fluid protein measurement in patients with pulmonary edema. Am. J. Med. 67, 32–38. |
[89] | Ferguson ND, Meade MO, Hallett DC, Stewart TE (2002) High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med., 28:1073–1077. |
[90] | Ferguson, N. D. et al. (2007). Clinical risk conditions for acute lung injury in the intensive care unit and hospital ward: a prospective observational study. Crit. Care 11, R96. |
[91] | Ferguson, N. D. et al. (2013). High-frequency oscillation in early acute respiratory distress syndrome. N. Engl. J. Med. 368, 795–805. |
[92] | Ferrante, L. E. et al. (2015). Functional trajectories among older persons before and after critical illness. JAMA Intern. Med. 175, 523–529. |
[93] | Festic, E. et al. (2017). Randomized clinical trial of a combination of an inhaled corticosteroid and beta agonist in patients at risk of developing the acute respiratory distress syndrome. Crit. Care Med. 45, 798–805. |
[94] | Fiedler, M.O., Diktanaite, D., Simeliunas, E., Pilz, M., and Kalenka, A. (2020). Prospective Observational Study to Evaluate the Effffect of Difffferent Levels of Positive End-Expiratory Pressure on Lung Mechanics in Patients with and without Acute Respiratory Distress Syndrome. Journal of Clinical Medicine, 9, 2446; doi:10.3390/jcm9082446. |
[95] | Fielding-Singh, V., Matthay, M. A. & Calfee, C. S. (2018). Beyond low tidal volume ventilation: treatment adjuncts for severe respiratory failure in acute respiratory distress syndrome. Crit. Care Med. 46, 1820–1831. |
[96] | Fischer, N. et al. (2014). Rapid metagenomic diagnostics for suspected outbreak of severe pneumonia. Emerg. Infect. Dis. 20, 1072–1075. |
[97] | Florio, G.; Ferrari, M.; Bittner, E.A.; De Santis Santiago, R.; Pirrone, M.; Fumagalli, J.; Droghi, M.T.; Mietto, C.; Pinciroli, R.; Berg, S.; et al. (2020). A lung rescue team improves survival in obesity with acute respiratory distress syndrome. Crit. Care, 24, 1–11. [CrossRef] |
[98] | Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. (2012). Acute respiratory distress syndrome: The Berlin Defifinition. JAMA, 307, 2526–2533. |
[99] | Frank, J. A. et al. (2002). Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am. J. Respir. Crit. Care Med. 165, 242–249. |
[100] | Frat, J. P. et al. (2015). High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N. Engl. J. Med. 372, 2185–2196. |
[101] | Frye, M. et al. (2015). Interfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin. J. Exp. Med. 212, 2267–2287. |
[102] | Fuller, B.M.; Page, D.; Stephens, R.J.; Roberts, B.W.; Drewry, A.M.; Ablordeppey, E.; Mohr, N.M.; Kollef, M.H. (2020). Pulmonary Mechanics and Mortality in Mechanically Ventilated Patients without Acute Respiratory Distress Syndrome: A Cohort Study. Shock, 49, 311–316. [CrossRef] [PubMed]J. Clin. Med., 9, 2446. |
[103] | Fumagalli, J.; Berra, L.; Zhang, C.; Pirrone, M.; Santiago, R.R.S.; Gomes, S.; Magni, F.; Dos Santos, G.A.B.; Bennett, D.; Torsani, V.; et al. (2017). Transpulmonary Pressure Describes Lung Morphology during Decremental Positive End-Expiratory Pressure Trials in Obesity. Crit. Care Med., 45, 1374–1381. [CrossRef] |
[104] | Fumagalli, J.; Santiago, R.R.S.; Droghi, M.T.; Zhang, C.; Fintelmann, F.J.; Troschel, F.M.; Morais, C.C.A.; Amato, M.B.P.; Kacmarek, R.M.; Berra, L.; et al. (2019). Lung Recruitment in Obese Patients with Acute Respiratory Distress Syndrome. Anesthesiology, 130, 791–803. [CrossRef] [PubMed] |
[105] | Gajic, O. et al. (2011). Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am. J. Respir. Crit. Care Med. 183, 462–470. |
[106] | Gattinoni, L. & Pesenti, A. (2005). The concept of “baby lung”. Intensive Care Med. 31, 776–784. |
[107] | Gattinoni, L. et al. (2006). Lung recruitment in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 354, 1775–1786. |
[108] | Gattinoni, L., Taccone, P., Carlesso, E. & Marini, J. J. (2013). Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am. J. Respir. Crit. Care Med. 188, 1286–1293. |
[109] | Gattinoni, L.; Carlesso, E.; Cressoni, M. (2015). Selecting the ‘right’ positive end-expiratory pressure level. Curr. Opin. Crit. Care, 21, 50–57. [CrossRef] |
[110] | Giannotta, M., Trani, M. & Dejana, E. (2013). VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev. Cell 26, 441–454. |
[111] | Goligher, E. C. et al. (2017). Lung recruitment maneuvers for adult patients with acute respiratory distress syndrome. A systematic review and meta-analysis. Ann. Am. Thorac Soc. 14, S304–S311. |
[112] | Goligher, E.C.; Kavanagh, B.P.; Rubenfeld, G.D.; Adhikari, N.K.; Pinto, R.; Fan, E.; Brochard, L.J.; Granton, J.T.; Mercat, A.; Richard, J.C.M.; et al. (2014). Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am. J. Respir. Crit. Care Med., 190, 70–76. [PubMed] |
[113] | Gotts, J. E., Abbott, J. & Matthay, M. A. (2014). Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L395–L406. |
[114] | Grieco, D.L.; Chen, L.; Brochard, L. (2017). Transpulmonary pressure: Importance and limits. Ann. Transl. Med., 5, 14. |
[115] | Griffiths, M. J. & Evans, T. W. (2005). Inhaled nitric oxide therapy in adults. N. Engl. J. Med. 353, 2683–2695. |
[116] | Grune, J.; Tabuchi, A.; Kuebler, W.M. (2019). Alveolar dynamics during mechanical ventilation in the healthy and injured lung. Intensive Care Med. Exp., 7, 1–20. [CrossRef] |
[117] | Guerin, C. et al. (2013). Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 368, 2159–2168. |
[118] | Guerin, C.; Papazian, L.; Reignier, J.; Ayzac, L.; Loundou, A.; Forel, J.M. (2016). Investigators of the Acurasys and Proseva Trials. Effffect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials. Crit. Care, 20, 384. [CrossRef] |
[119] | Gwozdzinska, P. et al. (2017). Hypercapnia impairs ENaC cell surface stability by promoting phosphorylation, polyubiquitination and endocytosis of beta-ENaC in a human alveolar epithelial cell line. Front. Immunol. 8, 591. |
[120] | Hasvold, J., Sjoding, M., Pohl, K., Cooke, C. & Hyzy, R. C. (2016). The role of human metapneumovirus in the critically ill adult patient. J. Crit. Care 31, 233–237. |
[121] | Herrero, R. et al. (2011). The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region. J. Clin. Invest. 121, 1174–1190. |
[122] | Herridge, M. S. et al. (2003). One-year outcomes in survivors of the acute respiratory distress syndrome. N. Engl. J. Med. 348, 683–693. |
[123] | Herridge, M. S. et al. (2011). Functional disability 5 years after acute respiratory distress syndrome. N. Engl. J. Med. 364, 1293–1304. |
[124] | Hogan, B. L. et al. (2014). Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138. |
[125] | Hogner, K. et al. (2013). Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLOS Pathog. 9, e1003188. |
[126] | Hong, D. K. et al. (2018). Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn. Microbiol. Infect. Dis. 92, 210–213. |
[127] | Honiden, S. & Gong, M. N. (2009). Diabetes, insulin, and development of acute lung injury. Crit. Care Med. 37, 2455–2464. |
[128] | Hook, J. L. et al. (2018). Disruption of staphylococcal aggregation protects against lethal lung injury. J. Clin. Invest. 128, 1074–1086. |
[129] | Hopkins, R. O. et al. (1999). Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 160, 50–56. |
[130] | Hopkins, R. O. et al. (2005). Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 171, 340–347. |
[131] | Howard, B. M. et al. (2015). Differences in degree, differences in kind: characterizing lung injury in trauma. J. Trauma Acute Care Surg. 78, 735–741. |
[132] | Huang, D. T. et al. (2017). Design and rationale of the reevaluation of systemic early neuromuscular blockade trial for acute respiratory distress syndrome. Ann. Am. Thorac Soc. 14, 124–133. |
[133] | Idell, S. et al. (1987). Angiotensin converting enzyme in bronchoalveolar lavage in ARDS. Chest 91, 52–56. |
[134] | Imai, Y. et al. (2003). Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289, 2104–2112. |
[135] | Jabaudon, M. et al. (2018). Receptor for advanced glycation end-products and ARDS prediction: a multicentre observational study. Sci. Rep. 8, 2603. |
[136] | Jansing, N. L. et al. (2017). Unbiased quantitation of alveolar type II to alveolar type I cell transdifferentiation during repair after lung injury in mice. Am. J. Respir. Cell Mol. Biol. 57, 519–526. |
[137] | Jia X, Malhotra A, Saeed M, Mark RG, Talmor D. (2008) Risk factors for ARDS in patients receiving mechanical ventilation for > 48 h. Chest 133:853–861. |
[138] | Kangelaris, K. N. et al. (2015). Increased expression of neutrophil-related genes in patients with early sepsisinduced ARDS. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L1102–L1113. |
[139] | Kao, K. C. et al. (2017). Coinfection and mortality in pneumonia-related acute respiratory distress syndrome patients with bronchoalveolar lavage: a prospective observational study. Shock 47, 615–620. |
[140] | Katzenstein, A. L., Bloor, C. M. & Leibow, A. (1976). A. Diffuse alveolar damage—the role of oxygen, shock, and related factors. A review. Am. J. Pathol. 85, 209–228. |
[141] | Khemani, R. G. et al. (2018). Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir. Med. 7, 115–128. |
[142] | Khemani, R. G., Smith, L. S., Zimmerman, J. J. & Erickson, S. (2015). Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 16, S23–S40. |
[143] | Klein, J. J., van Haeringen, J. R., Sluiter, H. J., Holloway, R. & Peset, R. (1976). Pulmonary function after recovery from the adult respiratory distress syndrome. Chest 69, 350–355. |
[144] | Kor, D. J. et al. (2016). Effect of aspirin on development of ARDS in at-risk patients presenting to the emergency department: the LIPS-A randomized clinical trial. JAMA 315, 2406–2414. |
[145] | Koval, M. et al. (2010). Extracellular matrix influences alveolar epithelial claudin expression and barrier function. Am. J. Respir. Cell Mol. Biol. 42, 172–180. |
[146] | Krebs, J.; Pelosi, P.; Tsagogiorgas, C.; Alb, M.; Luecke, T. (2009). Effffects of positive end-expiratory pressure on respiratory function and hemodynamics in patients with acute respiratory failure with and without intra-abdominal hypertension: A pilot study. Crit. Care, 13, R160. [CrossRef] |
[147] | Kress, J. P. & Hall, J. B. (2014). ICU-acquired weakness and recovery from critical illness. N. Engl. J. Med. 371, 287–288. |
[148] | Laffey, J. G. & Matthay, M. A. (2017). Fifty years of research in ARDS. Cell-based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value. Am. J. Respir. Crit. Care Med. 196, 266–273. |
[149] | Lakshminarayan, S., Stanford, R. E. & Petty, T. L. (1976). Prognosis after recovery from adult respiratory distress syndrome. Am. Rev. Respir. Dis. 113, 7–16. |
[150] | Lalgudi Ganesan, S., Jayashree, M., Singhi, S. C. & Bansal, A. (2018). Airway pressure release ventilation in pediatric acute respiratory distress syndrome: a randomized controlled trial. Am. J. Respir. Crit. Care Med. 198, 1199–1207. |
[151] | Langelier, C. et al. (2018). Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc. Natl Acad. Sci. USA 115, E12353–E12362. |
[152] | Lefrancais, E., Mallavia, B., Zhuo, H., Calfee, C. S. & Looney, M. R. (2018). Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 3, 98178. |
[153] | Levine, S. et al. (2008). Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N. Engl. J. Med. 358, 1327–1335. |
[154] | Levitt, J. E. & Matthay, M. A. (2012). Clinical review: early treatment of acute lung injury—paradigm shift toward prevention and treatment prior to respiratory failure. Crit. Care 16, 223. |
[155] | Levitt, J. E., Bedi, H., Calfee, C. S., Gould, M. K. & Matthay, M. A. (2009). Identification of early acute lung injury at initial evaluation in an acute care setting prior to the onset of respiratory failure. Chest 135, 936–943. |
[156] | Levitt, J. E., Calfee, C. S., Goldstein, B. A., Vojnik, R. & Matthay, M. A. (2013). Early acute lung injury: criteria for identifying lung injury prior to the need for positive pressure ventilation*. Crit. Care Med. 41, 1929–1937. |
[157] | Li, G. et al. (2011). Eight-year trend of acute respiratory distress syndrome: a opulation-based study in Olmsted County, Minnesota. Am. J. Respir. Crit. Care Med. 183, 59–66. |
[158] | Liang, J. et al. (2016). Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nat. Med. 22, 1285–1293. |
[159] | Liu, X. et al. (2012). Plasma sRAGE enables prediction of acute lung injury after cardiac surgery in children. Crit. Care 16, R91. |
[160] | Liu, Y. et al. (2011). FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa. J. Exp. Med. 208, 1473–1484. |
[161] | Loring, S.H.; O’Donnell, C.R.; Behazin, N.; Malhotra, A.; Sarge, T.; Ritz, R.; Novack, V.; Talmor, D. (2010). Esophageal pressures in acute lung injury: Do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J. Appl. Physiol., 108, 515–522. 11. |
[162] | Luce, J. M. et al. (1988). Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am. Rev. Respir. Dis. 138, 62–68. |
[163] | Malbrain, M.L.; Deeren, D.H. (2006). Effect of bladder volume on measured intravesical pressure: A prospective cohort study. Crit. Care, 10, R98. |
[164] | Malbrain, M.L.; Wilmer, A. (2007). The polycompartment syndrome: Towards an understanding of the interactions between difffferent compartments! Intensive Care Med., 33, 1869–1872. |
[165] | Mangialardi, R. J. et al. (2000). Hypoproteinemia predicts acute respiratory distress syndrome development, weight gain, and death in patients with sepsis. Ibuprofen Sepsis Study Group. Crit. Care Med. 28, 3137–3145. |
[166] | Matthay, M. A. (2014). Resolution of pulmonary edema. Thirty years of progress. Am. J. Respir. Crit. Care Med. 189, 1301–1308. |
[167] | Matthay, M. A. (2015). Saving lives with high-flow nasal oxygen. N. Engl. J. Med. 372, 2225–2226. |
[168] | Matthay, M. A. (2016). Challenges in predicting which patients will develop ARDS. Lancet Respir. Med. 4, 847–848. |
[169] | Matthay, M. A. et al. (2018). Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir. Med. 7, P154–P162. |
[170] | Matthay, M. A., McAuley, D. F. & Ware, L. B. (2017). Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir. Med. 5, 524–534. |
[171] | Matthay, M. A., Ware, L. B. & Zimmerman, G. A. (2012). The acute respiratory distress syndrome. J. Clin. Invest. 122, 2731–2740. |
[172] | Matthay, M.A., Zemans, R.L., Zimmerman, G.A., Arabi, Y.M., Beitler, J.R., Mercat, A., Herridge, M., Randolph, A.G. and Carolyn S. Calfee, C.S. (2019). Acute respiratory distress syndrome. Nature Reviews: Disease Primers, 5(18), 1-22. doi: https://doi.org/10.1038/s41572-019-0069-0. |
[173] | McAuley, D. F. et al. (2014). Simvastatin in the acute respiratory distress syndrome. N. Engl. J. Med. 371, 1695–1703. |
[174] | McHugh, L. G. et al. (1994). Recovery of function in survivors of the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 150, 90–94. |
[175] | Meade, M. O. et al. (2008). Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299, 637–645. |
[176] | Meduri, G. U. et al. (1995). Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 108, 1303–1314. |
[177] | Meduri, G. U. et al. (2016). Prolonged glucocorticoid treatment is associated with improved ARDS outcomes: analysis of individual patients’ data from four randomized trials and trial-level meta-analysis of the updated literature. Intensive Care Med. 42, 829–840. |
[178] | Mendez, J. L. & Hubmayr, R. D. (2005). New insights into the pathology of acute respiratory failure. Curr. Opin. Crit. Care 11, 29–36. |
[179] | Mercat, A. et al. (2008). Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299, 646–655. |
[180] | Meyer, N. J. & Calfee, C. S. (2017). Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome. Lancet Respir. Med. 5, 512–523. |
[181] | Mi, M. Y., Matthay, M. A. & Morris, A. H. (2018). Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N. Engl. J. Med. 379, 884–887. |
[182] | Miah, M. R. (2018). Assessment of Environmental Policy Instruments along with Information Systems for Biodiversity Conservation in Bangladesh (Doctoral dissertation, PhD Thesis. IBEC, UNIMAS, Malaysia. Retrieved from https://ir.unimas.my/id/eprint/24535/ |
[183] | Miah, M. R. (2020b). Concept of Cyber Antichrists, Chapter one. Cyber Dazzal: Sushaysther Ontoray (ed., pp. 1-128). Published by Paprhi Prakash, Sylhet, Bangladesh. Retrieved from https://www.rokomari.com/book/202988/cyber-dazzal---sushaysther-ontoray. |
[184] | Miah, M. R., Hannan, M. A., Rahman, A. S., Khan, M. S., Hossain, M. M., Rahman, I. T., ... & Sayok, A. K. (2021g). Processed Radio Frequency towards Pancreas Enhancing the Deadly Diabetes Worldwide. Journal of Endocrinology Research, 3(1). https://doi.org/10.30564/jer.v3i1.2826. |
[185] | Miah, M. R., Hasan, M. M., Parisa, J. T., Alam, M. S. E., Akhtar, F., Begum, M., … Chowdhury, S. H. (2021d). Unexpected Effects of Advanced Wireless Sensor Technology on Climate Change. World Environment, 11(2), 41-82. https://doi.org/10.5923/j.env.20211102.01. |
[186] | Miah, M. R., Hasan, M. M., Parisa, J. T., Alam, M. S. E., Hossain, M. M., Akhtar, F., ... & Chowdhury, S. H. (2021c). Coronavirus: A Terrible Global Democracy. International Journal of Applied Sociology, 11(2), 46-82. Retrieved from http://article.sapub.org/10.5923.j.ijas.20211102.02.html |
[187] | Miah, M. R., Hasan, M. M., Parisa, J. T., Alam, M. S. E., Shahriar, C. S., Akhtar, F., … Chowdhury, S. H. (2022). Impact of Oscillated Wireless Sensor Networks to Initiate Cardiac Arrest. International Journal of Internal Medicine, 11(1), 1-17. https://doi.org/10.5923/j.ijim.20221101.01. |
[188] | Miah, M. R., Khan, M. S., Rahman, A. A. M. S., Samdany, A. A., Hannan, M. A., Chowdhury, S. H., & Sayok, A. K. (2020a). Impact of Sensor Networks towards Individuals Augmenting Causes of Diabetes. International Journal of Diabetes Research, 9(2), 1-10. https://doi.org/10.5923/j.diabetes.20200902. |
[189] | Miah, M. R., Mustaffa, M. S., Jayos, S., Ibrahim, N. H., Bujang, S., Saili, J., & Sayok, A. K. (2019). Towards Stimulating Tools for Advancement of Environmental Conservation through Promoting of Psychological Instruments. Journal of Sustainable Development, 12(4), 196-224. https://doi.org/10.5539/jsd.v12n4p196. |
[190] | Miah, M. R., Rahman, A. A. M. S., Hasan, M. M., Parisa, J. T., Hannan, M. A., Hossain, M. M., ... & Chowdhury, S. H. (2021f). Adverse Effects of Wireless Sensor Technology to Debilitating in Numbness. International Journal of Virology and Molecular Biology, 10(1), 12-25. https://doi.org/10.5923/j.ijvmb.20211001.03. |
[191] | Miah, M. R., Rahman, A. A. M. S., Khan, M. S., Hannan, M. A., Hossain, M. S., Shahriar, C. S., ... & Chowdhury, S. H. (2021a). Effect of Coronavirus Worldwide through Misusing of Wireless Sensor Networks. American Journal of Bioinformatics Research, 11(1), 1-31. https://doi.org/10.30564/jer.v3i1.2826. |
[192] | Miah, M. R., Rahman, A. A. M. S., Khan, M. S., Samdany, A. A., Hannan, M. A., Chowdhury, S. H., & Sayok, A. K. (2020). Impact of Sensor Technology Enhancing Corona Disease. American Journal of Biomedical Engineering, 10(1), 1-11. https://doi.org/10.5923/j.ajbe.20201002. |
[193] | Miah, M. R., Rahman, A. A. M. S., Parisa, J. T., Hannan, M. A., Khan, M. S., Samdany, A. A., ... & Chowdhury, S. H. (2021). Discovery of Coronavirus with Innovative Technology. Science and Technology, 11(1), 7-29. https://doi.org/10.5923/j.scit.20211101.02. |
[194] | Miah, M. R., Rahman, A. A. M. S., Samdany, A. A., & Chowdhury, S. H. (2021b). A Dynamic Scientific Model for Recovery of Corona Disease. Frontiers in Science, 11(1), 1-17. https://doi.org/10.30564/jer.v3i1.2826. |
[195] | Miah, M. R., Sayok, A. K., Rahman, A. A. M. S., Samdany, A. A., Akhtar, F., Azad, A. K., … Begum, M. (2021e). Impact of Sensor Networks on Aquatic Biodiversity in Wetland: An Innovative Approach. Geosciences, 11(1), 10-42. https://doi.org/10.5923/j.geo.20211101.02. |
[196] | Miah, M.R., Hasan, M.M., Hannan, M.A., Parisa, J.T., Uddin, M.J., Uddin, M.B., Rahman, A.A.M.S., Hossain, S.A.M.I., Sharif, M.A., Akhtar, F., Shamsuddin, M.A.S., Alam, M.S.E., Alam, M.S., Abdullah, F., Rahman, M.S., Uddin, M.B., Shahriar, C.S., Sayok, A.K., Begum, M., Hossain, M.M., Khan, M.S., Ahmed, G., Malik, S.U.F., Samdany, A.A., Ghani, M.A., Hossain, M.S., Nazrin, M.S., Tamim, M.A.K., Selim, M.A., Talukdar, M.T.H., Chowdhury, F.T., Rashid, T.U., Nazim, A.Y.M., Rashid, M., Chowdhury, S.H. (2022). Myths about Coronavirus: A Research Defense. Global Journal of Health Science, 14(2), 63–112. url: https://ccsenet.org/journal/index.php/gjhs/article/view/0/46717. |
[197] | Mikkelsen, M. E. et al. (2012). The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am. J. Respir. Crit. Care Med. 185, 1307–1315. |
[198] | Mojoli, F.; Iotti, G.A.; Torriglia, F.; Pozzi, M.; Volta, C.A.; Bianzina, S.; Braschi, A.; Brochard, L. (2016). In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit. Care, 20, 1–9. |
[199] | Morrell, E. D. et al. (2018). Peripheral and alveolar cell transcriptional programs are distinct in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 197, 528–532. |
[200] | Moss, M. & Mannino, D. M. (2002). Race and gender differences in acute respiratory distress syndrome deaths in the United States: an analysis of multiplecause mortality data (1979–1996). Crit. Care Med. 30, 1679–1685. |
[201] | Moss, M. et al. (2000). Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Crit. Care Med. 28, 2187–2192. |
[202] | Moss, M., Bucher, B., Moore, F. A., Moore, E. E. & Parsons, P. E. (1996). The role of chronic alcohol abuse in the development of acute respiratory distress syndrome in adults. JAMA 275, 50–54. |
[203] | Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B, Micek ST, Kollef MH. (2009). The importance of fluid management in acute lung injury secondary to septic shock. Chest 136:102–109. |
[204] | Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A. & Desai, T. J. (2018). Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359, 1118–1123. |
[205] | Neamu RF and Martin GS (2013) Fluid management in acute respiratory distress syndrome. Curr Opin Crit Care 19: 24–30. |
[206] | Needham, D. M. et al. (2014). Risk factors for physical impairment after acute lung injury in a national, multicenter study. Am. J. Respir. Crit. Care Med. 189, 1214–1224. |
[207] | Neto, A. S. & Jaber, S. (2016). What’s new in mechanical ventilation in patients without ARDS: lessons from the ARDS literature. Intensive Care Med. 42, 787–789. |
[208] | Nikolaidis, N. M. et al. (2017). Mitogenic stimulation accelerates influenza-induced mortality by increasing susceptibility of alveolar type II cells to infection. Proc. Natl Acad. Sci. USA 114, E6613–E6622. |
[209] | Nuckton, T. J. et al. (2002). Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N. Engl. J. Med. 346, 1281–1286. |
[210] | Nye, S., Whitley, R. J. & Kong, M. (2016). Viral infection in the development and progression of pediatric acute respiratory distress syndrome. Front. Pediatr. 4, 128. |
[211] | Olegard, C.; Sondergaard, S.; Houltz, E.; Lundin, S.; Stenqvist, O. (2005). Estimation of functional residual capacity at the bedside using standard monitoring equipment: A modifified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth. Analg. 101, 206–212. 17. |
[212] | Palakshappa, J. A. & Meyer, N. J. (2015). Which patients with ARDS benefit from lung biopsy? Chest 148, 1073–1082. |
[213] | Pandharipande, P. P. et al. (2013). Long-term cognitive impairment after critical illness. N. Engl. J. Med. 369, 1306–1316. |
[214] | Papazian, L. et al. (2010). Neuromuscular blockers in early acute respiratory distress syndrome. N. Engl. J. Med. 363, 1107–1116. |
[215] | Parker, J. C., Townsley, M. I., Rippe, B., Taylor, A. E. & Thigpen, J. (1984). Increased microvascular permeability in dog lungs due to high peak airway pressures. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 57, 1809–1816. |
[216] | Parsons, P. E. et al. (2005). Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit. Care Med. 33, 1–6; discussion 230–232. |
[217] | Parsons, P. E., Matthay, M. A., Ware, L. B. & Eisner, M. D. (2005). Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 288, L426–L431. |
[218] | Patel, B. K., Wolfe, K. S., Pohlman, A. S., Hall, J. B. & Kress, J. P. (2016). Effect of noninvasive ventilation delivered by helmet versus face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 315, 2435–2441. |
[219] | Pfoh, E. R. et al. (2016). Physical declines occurring after hospital discharge in ARDS survivors: a 5-year longitudinal study. Intensive Care Med. 42, 1557–1566. |
[220] | Pham, T. & Rubenfeld, G. D. (2017). Fifty years of research in ARDS. The epidemiology of acute respiratory distress syndrome. A 50th birthday review. Am. J. Respir. Crit. Care Med. 195, 860–870. |
[221] | Putensen, C. et al. (2001). Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am. J. Respir. Crit. Care Med. 164, 43–49. |
[222] | Putensen, C., Mutz, N. J., Putensen-Himmer, G. & Zinserling, J. (1999). Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 159, 1241–1248. |
[223] | Puthucheary, Z. A. et al. (2013). Acute skeletal muscle wasting in critical illness. JAMA 310, 1591–1600. |
[224] | Quantius, J. et al. (2016). Influenza virus infects epithelial stem/progenitor cells of the distal lung: impact on Fgfr2b-driven epithelial repair. PLOS Pathog. 12, e1005544. |
[225] | Rackley, C.R.; MacIntyre, N.R. (2019). Low Tidal Volumes for Everyone? Chest, 156, 783–791. |
[226] | Rafii, S. et al. (2015). Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nat. Cell Biol. 17, 123–136. |
[227] | Randolph, A. G. (2009). Management of acute lung injury and acute respiratory distress syndrome in children. Crit. Care Med. 37, 2448–2454. |
[228] | Ranieri, V. M. et al. (1999). Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282, 54–61. |
[229] | Ranieri, V.M., Rubenfeld, G.D., Thompson, B.T., Ferguson, N.D., Caldwell, E., Fan, E., Camporota, L., Slutsky, A.S., Antonelli, M., Anzueto, A., Beale, R., Brochard, L., Brower, R., Esteban, A., Gattinoni, L., Rhodes, A., Vincent, J.L., Bersten, A., Needham, D., Pesenti, A. (ARDS Definition Task Force). (2012). Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA. 2012; 307(23): 2526–2533. doi:10.1001/jama.2012.5669. |
[230] | Ray, S. et al. (2016). Rare SOX2(+) airway progenitor cells generate KRT5(+) cells that repopulate damaged alveolar parenchyma following influenza virus infection. Stem Cell Rep. 7, 817–825. |
[231] | Regli, A.; Pelosi, P.; Malbrain, M. (2019). Ventilation in patients with intra-abdominal hypertension: What every critical care physician needs to know. Ann. Intensive Care, 9, 52. [CrossRef] [PubMed] |
[232] | Reilly, J. P. et al. (2018). Low to moderate air pollutant exposure and acute respiratory distress syndrome after severe trauma. Am. J. Respir. Crit. Care Med. 199, 62–70. |
[233] | Reilly, J. P. et al. (2018). Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med. 44, 1849–1858. |
[234] | Reilly, J. P., Christie, J. D. & Meyer, N. J. (2017). Fifty years of research in ARDS. Genomic contributions and opportunities. Am. J. Respir. Crit. Care Med. 196, 1113–1121. |
[235] | Repesse, X., Charron, C. & Vieillard-Baron, A. (2015). Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 147, 259–265. |
[236] | Rice, T. W. et al. (2011). Vascular pedicle width in acute lung injury: correlation with intravascular pressures and ability to discriminate fluid status. Crit. Care 15, R86. |
[237] | Riviello, E. D. et al. (2016). Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali Modification of the Berlin Definition. Am. J. Respir. Crit. Care Med. 193, 52–59. |
[238] | Robert, D. et al. (2008). A series of five adult cases of respiratory syncytial virus-related acute respiratory distress syndrome. Anaesth. Intensive Care 36, 230–234. |
[239] | Roberts, J. A. et al. (2016). Continuous versus intermittent beta-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am. J. Respir. Crit. Care Med. 194, 681–691. |
[240] | Robinson, B. R. et al. (2013). Application of the Berlin definition in PROMMTT patients: the impact of resuscitation on the incidence of hypoxemia. J. Trauma Acute Care Surg. 75, S61–S67. |
[241] | Rosenberg AL, Dechert RE, Park PK, Bartlett RH, Network NIHNHLBIARDS (2009). Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume cohort. J Intensive Care Med., 24: 35–46. |
[242] | Ross, J. T., Matthay, M. A. & Harris, H. W. (2018). Secondary peritonitis: principles of diagnosis and intervention. BMJ 361, k1407. |
[243] | Rubenfeld, G. D. et al. (2005). Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353, 1685–1693. |
[244] | Rubenfeld, G. D., Caldwell, E., Granton, J., Hudson, L. D. & Matthay, M. A. (1999). Interobserver variability in applying a radiographic definition for ARDS. Chest 116, 1347–1353. |
[245] | Rubin, D. B. et al. (1990). Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J. Clin. Invest. 86, 474–480. |
[246] | Ryb, G. E. & Cooper, C. (2010). Race/ethnicity and acute respiratory distress syndrome: a National Trauma Data Bank study. J. Natl Med. Assoc. 102, 865–869. |
[247] | Saffarzadeh, M. et al. (2012). Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLOS ONE 7, e32366. |
[248] | Sahetya, S. K. & Brower, R. G. (2017). Lung recruitment and titrated PEEP in moderate to severe ARDS: is the door closing on the open lung? JAMA 318, 1327–1329. |
[249] | Sakr Y, Vincent JL, Reinhart K, Groeneveld J, Michalopoulos A, Sprung CL, Artigas A, Ranieri VM, Occurence S, in Acutely Ill Patients Investigators, (2005) High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest, 128:3098–3108. |
[250] | Schelling, G. et al. (1998). Health-related quality of life and posttraumatic stress disorder in survivors of the acute respiratory distress syndrome. Crit. Care Med. 26, 651–659. |
[251] | Schlingmann, B. et al. (2016). Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions. Nat. Commun. 7, 12276. |
[252] | Schouten, L. R. et al. (2016). Incidence and mortality of acute respiratory distress syndrome in children: a systematic review and meta-analysis. Crit. Care Med. 44, 819–829. |
[253] | Schulte, D. et al. (2011). Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J. 30, 4157–4170. |
[254] | Schumacker, P. T. et al. (2014). Mitochondria in lung biology and pathology: more than just a powerhouse. Am. J. Physiol. Lung Cell. Mol. Physiol. 306, L962–L974. |
[255] | Schweickert, W. D. et al. (2009). Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373, 1874–1882. |
[256] | Shaver, C. M. et al. (2018). Cell-free hemoglobin promotes primary graft dysfunction through oxidative lung endothelial injury. JCI Insight 3, 98546. |
[257] | Short, K. R. et al. (2016). Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 47, 954–966. |
[258] | Simmons RS, Berdine GG, Seidenfeld JJ, Prihoda TJ, Harris GD, Smith JD, Gilbert TJ, Mota E, Johanson WG Jr (1987) Fluid balance and the adult respiratory distress syndrome. Am Rev Respir Dis., 135:924–929. |
[259] | Sinha, P. et al. (2018). Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 44, 1859–1869. |
[260] | Sinha, P. et al. (2019). Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 199, 333–341. |
[261] | Slutsky, A.S.; Ranieri, V.M. (2013). Ventilator-induced lung injury. N. Engl. J. Med., 369, 2126–2136. |
[262] | Spicer, A. C. et al. (2016). A simple and robust bedside model for mortality risk in pediatric patients with acute respiratory distress syndrome. Pediatr. Crit. Care Med. 17, 907–916. |
[263] | Spina, S.; Capriles, M.; De Santis Santiago, R.; Florio, G.; Teggia-Droghi, M.; Grassi, L.; Hu, J.; Kelley, R.; Bittner, E.A.; Kacmarek, R.M.; et al. (2020). Development of a Lung Rescue Team to Improve Care of Subjects with Refractory Acute Respiratory Failure. Respir. Care, 65, 420–426. [CrossRef] |
[264] | Sprung, C. L., Rackow, E. C., Fein, I. A., Jacob, A. I. & Isikoff, S. K. (1981). The spectrum of pulmonary edema: differentiation of cardiogenic, intermediate, and noncardiogenic forms of pulmonary edema. Am. Rev. Respir. Dis. 124, 718–722. |
[265] | Steinberg, J.M.; Schiller, H.J.; Halter, J.M.; Gatto, L.A.; Lee, H.M.; Pavone, L.A.; Nieman, G.F. (2004). Alveolar instability causes early ventilator-induced lung injury independent of neutrophils. Am. J. Respir. Crit. Care Med., 169, 57–63. [CrossRef] |
[266] | Steinberg, K. P. et al. (2006). Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N. Engl. J. Med. 354, 1671–1684. |
[267] | Talmor, D.; Sarge, T.; Malhotra, A.; O’Donnell, C.R.; Ritz, R.; Lisbon, A.; Novack, V.; Loring, S.H. (2008). Mechanical ventilation guided by esophageal pressure in acute lung injury. N. Engl. J. Med., 359, 2095–2104. |
[268] | Taylor, R. W. et al. (2004). Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 291, 1603–1609. |
[269] | Terragni, P. P. et al. (2009). Tidal volume lower than 6ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111, 826–835. |
[270] | Thille, A. W. et al. (2013). Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies. Lancet Respir. Med. 1, 395–401. |
[271] | Thille, A. W. et al. (2013). Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am. J. Respir. Crit. Care Med. 187, 761–767. |
[272] | Thompson, B. T., Chambers, R. C. & Liu, K. D. (2017). Acute respiratory distress syndrome. N. Engl. J. Med. 377, 562–572. |
[273] | Tomashefski, J. F. Jr. (2000). Pulmonary pathology of acute respiratory distress syndrome. Clin. Chest Med. 21, 435–466. |
[274] | Toy, P. et al. (2012). Transfusion-related acute lung injury: incidence and risk factors. Blood 119, 1757–1767. |
[275] | Tremblay, L., Valenza, F., Ribeiro, S. P., Li, J. & Slutsky, A. S. (1997). Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Invest. 99, 944–952. |
[276] | Uchida, T. et al. (2006). Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am. J. Respir. Crit. Care Med. 173, 1008–1015. |
[277] | Vadasz, I. & Sznajder, J. I. (2017). Gas exchange disturbances regulate alveolar fluid clearance during acute lung injury. Front. Immunol. 8, 757. |
[278] | Van Mourik N, Metske HA, Hofstra JJ, Binnekade JM, Geerts BF, Schultz MJ, Vlaar APJ (2019) Cumulative fluid balance predicts mortality and increases time on mechanical ventilation in ARDS patients. An observational cohort study. PLoS ONE 14:e0224563. |
[279] | Vaughan, A. E. et al. (2015). Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517, 621–625. |
[280] | Vieillard-Baron A, Matthay M, Teboul JL, Bein T, Schultz M, Magder S, Marini JJ. (2016). Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med., 42:739–749. |
[281] | Vignon, P., Evrard, B., Asfar, P., Busana, M., Calfee, C.S., Coppola, S., Protti, A.; Cressoni, M.; Santini, A.; Langer, T.; Mietto, C.; Febres, D.; Chierichetti, M.; Coppola, S.; Conte, G.; Gatti, S.; et al. (2011). Lung stress and strain during mechanical ventilation: Any safe threshold? Am. J. Respir. Crit. Care Med., 183, 1354–1362. |
[282] | Vignon, P., Evrard, B., Asfar, P., Busana, M., Calfee, C. S., Coppola, S., Demiselle,J., Geri, G., Jozwiak, M., Martin, G.S., Gattinoni, L., and Chiumello, D. (2020). Fluid administration and monitoring in ARDS: which management? Intensive Care Medicine. doi:10.1007/s00134-020-06310-0. |
[283] | Vohwinkel, C. U. et al. (2011). Elevated CO(2) levels cause mitochondrial dysfunction and impair cell proliferation. J. Biol. Chem. 286, 37067. |
[284] | Wang, L. et al. (2007). Novel role of the human alveolar epithelium in regulating intra-alveolar coagulation. Am. J. Respir. Cell Mol. Biol. 36, 497–503. |
[285] | Ware, L. B. & Matthay, M. A. (2001). Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 163, 1376–1383. |
[286] | Ware, L. B. et al. (2010). Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest 137, 288–296. |
[287] | Ware, L. B. et al. (2016). Long-term ozone exposure increases the risk of developing the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 193, 1143–1150. |
[288] | Ware, L. B., Fremont, R. D., Bastarache, J. A., Calfee, C. S. & Matthay, M. A. (2010). Determining the aetiology of pulmonary oedema by the oedema fluid-to-plasma protein ratio. Eur. Respir. J. 35, 331–337. |
[289] | Warren, M. A. et al. (2018). Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax 73, 840–846. |
[290] | Webb, H. H. & Tierney, D. F. (1974). Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am. Rev. Respir. Dis. 110, 556–565. |
[291] | Weigelt, J. A., Norcross, J. F., Borman, K. R. & Snyder, W. H. (1985). 3rd. Early steroid therapy for respiratory failure. Arch. Surg. 120, 536–540. |
[292] | Weinert, C. R., Gross, C. R., Kangas, J. R., Bury, C. L. & Marinelli, W. A. (1997). Health-related quality of life after acute lung injury. Am. J. Respir. Crit. Care Med. 156, 1120–1128. |
[293] | Wheeler, A. P. et al. (2006). Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N. Engl. J. Med. 354, 2213–2224. |
[294] | Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network (2006) Comparison of two fluid-management strategies in acutelung injury. New Engl J Med., 354: 2564–2575. |
[295] | Wiener-Kronish, J. P., Albertine, K. H. & Matthay, M. A. (1991). Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. J. Clin. Invest. 88, 864–875. |
[296] | Williams, A. E. et al. (2017). Evidence for chemokine synergy during neutrophil migration in ARDS. Thorax 72, 66–73. |
[297] | Writing Group for the PReVENT Investigators; Simonis, F.D.; Neto, A.S.; Binnekade, J.M.; Braber, A.; Bruin, K.C.M.; Determann, R.M.; Goekoop, G.J.; Heidt, J.; Horn, J.; et al. (2018). Effffect of a Low vs. Intermediate Tidal Volume Strategy on Ventilator-Free Days in Intensive Care Unit Patients without ARDS: A Randomized Clinical Trial. JAMA, 320, 1872–1880. |
[298] | Xi, Y. et al. (2017). Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat. Cell Biol. 19, 904–914. |
[299] | Young, D. et al. (2013). High-frequency oscillation for acute respiratory distress syndrome. N. Engl. J. Med. 368, 806–813. |
[300] | Zacharias, W. J. et al. (2018). Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251–255. |
[301] | Zemans, R. L. et al. (2011). Neutrophil transmigration triggers repair of the lung pithelium via beta-catenin signaling. Proc. Natl Acad. Sci. USA 108, 15990–15995. |
[302] | Zinter, M. S. et al. (2019). Positive cumulative fluid balance is associated with mortality in pediatric acute respiratory distress syndrome in the setting of acute kidney injury. Pediatr. Crit. Care Med. https://doi.org/10.1097/ PCC.0000000000001845. |
[303] | Mahajan, S., Abualigah, L. & Pandit, A.K. (2022). Hybrid arithmetic optimization algorithm with hunger games search for global optimization. Multimed Tools Appl., https://doi.org/10.1007/s11042-022-12922-z. |
[304] | Mahajan, S. and Pandit, A.K. (2021). Hybrid method to supervise feature selection using signal processing and complex algebra techniques. Multimed Tools Appl, https://doi.org/10.1007/s11042-021-11474-y. |
[305] | Mahajan, S., Abualigah, L., Pandit, A.K. Al Nasar, M.R., Alkhazaleh, H.A. & Altalhi, M. (2022b). Fusion of modern meta-heuristic optimization methods using arithmetic optimization algorithm for global optimization tasks. Soft Comput., https://doi.org/10.1007/s00500-022-07079-8. |
[306] | Shubham Mahajan. And Pandit, A.K. (2022). Image Segmentation and Optimization Techniques: A Short Overview. Medicon Engineering Themes, 2(2), 47-49. |
[307] | Rahkar, F.T. and Demirci, R. (2021). Multi-level image thresholding with multimodal optimization. Multimedia Tools and Applications, 1-17. |
[308] | Mahajan, S., Abualigah, L., Pandit, A.K. and Altalhi, M. (2022c). Hybrid Aquila optimizer with arithmetic optimization algorithm for global optimization tasks. Soft Comput 26, 4863–4881. https://doi.org/10.1007/s00500-022-06873-8. |
[309] | Kao Kao KC, Hu HC, Chang CH, Hung CY, Chiu LC, Li SH, Lin SW, Chuang LP, Wang CW, Li LF, Chen NH, Yang CT, Huang CC, Tsai YH. (2015). Diffuse alveolar damage associated mortality in selected acute respiratory distress syndrome patients with open lung biopsy. Crit Care, 19(1): 228. doi: 10.1186/s13054-015-0949-y. PMID: 25981598; PMCID: PMC4449559. |
[310] | Sharma R, Zhou M, Tiba MH, McCracken, B.M., Dickson, R.P., Gillies, C.E., Sjoding, M.W., Nemzek, J.A., Ward, K.R., Stringer, K.A. and Fan, X. (2022). Breath analysis for detection and trajectory monitoring of acute respiratory distress syndrome in swine. ERJ Open Res., 8: 00154-2021. DOI: 10.1183/23120541.00154-2021. |
[311] | Gandotra, S., Lovato, J., Case, D., Bakhru, R.N., Gibbs, K., Berry, M., Files, D.C. and Morris, P.E. (2019). Physical Function Trajectories in Survivors of Acute Respiratory Failure. Annals of the American Thoracic Society, 16(4), 471–477. DOI: 10.1513/AnnalsATS.201806-375OC. |
[312] | Hernandez-Aguila, M., Olvera-Cervantes, JL., Perez-Ramos, AE, Corona-Chavez, A. (2022). Methodology for the determination of human respiration rate by using Doppler radar and Empirical Modal Decomposition. Sci Rep 12, 8675. doi: https://doi.org/10.1038/s41598-022-12726-z. |
[313] | López-Aguilar,J., Magrans, R. and Blanch, L. (2017). Dead Space in ARDS: Die Hard. Respiratory Care, 62 (10) 1372-1374; doi: https://doi.org/10.4187/respcare.05842. |