[1] | Hanzel CE, Pichet-Binette A, Pimentel LSB, Lulita MF, Allard S, Ducatenzeiler A, Do Carmo S, Cuello AC (2014). Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging. 35: 2249-2262. |
[2] | González CLR, Miranda MI, Gutiérrez H, Ormsby C, Bermúdez-Rattoni F (2000). Differential participation of the NBM in the acquisition and retrieval of conditioned taste aversion and Morris water maze. Behav. Brain Res. 116(1): 89-98. |
[3] | Bailey AM, Rudisill ML, Hoof EJ, Loving ML (2003). 192 IgG-saporin lesions to the nucleus basalis magnocellularis (nBM) disrupt acquisition of learning set formation. Brain Res. 969: 147-159. |
[4] | Ogawa M, Iida Y, Nakagawa M, Kuge Y, Kawashima H, Tominaga A, Ueda M, Magata Y, Saji H (2006). Change of central cholinergic receptors following lesions of nucleus basalis magnocallularis in rats: search for an imaging index suitable for the early detection of Alzheimer’s disease. Nucl Med Biol. 33: 249-254. |
[5] | Laurijssens B, Aujard F, Rahman A (2013). Animal models of Alzheimer’s disease and drug development. Translational pharmacology. 10(3):319-327. |
[6] | Liu Z, Ruan Y, Yue W, Zhu Z, Hartmann T, Beyreuther K, Zhang D (2006). GM1 up-regulates Ubiquilin 1 expression in human neuroblastoma cells and rat cortical neurons. Neurosci Let. 407: 59-63. |
[7] | Singh AK, Harrison SH, Schoeniger JS (2000). Gangliosides as Receptors for Biological Toxins: Development of Sensitive Fluoroimmunoassays Using Ganglioside-Bearing Liposomes. Anal Chem. 72: 6019-6024. |
[8] | Fujii S, Igarashi K, Sasaki H, Furuse H, Ito KI, Kaneko K, Kato H, Inokuchi JI, Waki H, Ando S (2002). Effects of the mono- and tetrasialogangliosides GM1 and GQ1b on ATP-induced long-term potentiation in hippocampal CA1 neurons. Glycobiology. 12(5): 339- 344. |
[9] | Furuse H, Waki K, Kaneko K, Fujii S, Miura M, Sasaki H, Kato H, Ando S (1998). Effect of mono- and tetra-sialogangliosides, GM1 and GQ1b, on long-term potentiation in the CA1 hippocampal neurons of the guinea pig. Exp. Brain Res. 123: 307-314. |
[10] | Rodden FA, Wiegandt H, Bauer BL (1991). Gangliosides: the relevance of current research to neurosurgery. J. Neurosurgery. 74(4): 606-619. |
[11] | Rabiei Z, Rafieian-kopaei M, Heidarian E, Saghaei E, Mokhtari Sh (2014). Effects of Zizyphus jujube Extract on Memory and Learning Impairment Induced by Bilateral Electric Lesions of the Nucleus Basalis of Meynert in Rat. Neurochem Res. 39:353–360. |
[12] | Moazedi AA, Belaran M, Hemmaty A, Rasekh A (2008). The role of Beta-Adrenergic system on the enhancement of spatial learning caused by glucose injection in young male rats. Int. J. Pharmacol. 4(1):34-39. |
[13] | Butt AE, Hodge GK (1997). Simple and configural association learning in rats with bilateral quisqualic acid lesions of the nucleus basalis magnocellularis. Behav Brain Res. 89(12):71–85. |
[14] | Bailey AM, Lee JM (2007). Lesion to the nucleus basalis mangocellularis lower performance but do not block the retention of a previously acquired learning set. Brain Res. 1136: 110-121. |
[15] | Silva RH, Bellot RG, Vital MA, Frussa-Filho R (1997). Effects of long-term ganglioside GM1 administration on a new discriminative avoidance test in normal adult mice. Psychopharmacol. 129(4):322-8. |
[16] | Fong TG, Neff NH, Hadjiconstantinou M (1997). GM1 ganglioside improves spatial learning and memory of aged rats. Behav Brain Res. 85(2):203-11. |
[17] | Fagioli S, Rossi-arnaud C, Ammassari-Teule (1991). Open field behaviours and spatial learning performance in C57BL/6 mice: early stage effects of chronic GM1 ganglioside administration. Psychopharmacol. 105: 209-212. |
[18] | Karpiak SE, Li Y.S., Mahadik, S. P. (1987) Gangliosides (GM1 and AGF2) reduced mortality due to ischemia: protection of membrane function. Stroke, 18 (1): 184-187. |
[19] | Wojcik M, Ulas J, Oderfeld-Nowak B (1982). The stimulating effect of ganglioside injections on the recovery of the choline acetyltransferase and the acetylcholinesterase activities in the hippocampus of the rat after septal lesions. Neurosci. 7: 495 - 499. |
[20] | Gradkowska M, Skup M, Kiedrowski L, Calzolari S, Oderfeld- Nowak B (1986). The effect of GM1 ganglioside on cholinergic and serotoninergic systems in the rat hippocampus following partial denervation is dependent on the degree of fiber degeneration. Brain Res. 375: 417-422. |
[21] | Mahadik SP, Vilim F, Korenovsky A, Karpiak SE (1988). GM1 ganglioside protects nucleus basalis from excitotoxin damage: reduced cortical cholinergic losses and animal mortality. J. Neurosci. Res. 20: 479-483. |
[22] | Tessitore A, Martin MP, Sano R, Ma Y, Mann L, Ingrassia A, Laywell ED, Steindler DA, Hendershot LM, d’Azzo A (2004). GM1-Ganglioside- mediated Activation of the Unfolded Protein Response Causes Neuronal Death in a Neurodegenerative Gangliosidosis. J. Mol. Cell. 15: 753-766. |
[23] | Bianchi R, Janigro D, Milan F, Giudici G, Gorio A (1986). In vivo treatment with GM1 prevents the rapid decay of ATPase activities and mitochondrial damage in hippocampal slices. Brain Res. 364:400-404. |
[24] | Karpiak SE, Li YS, Mahadik SP (1987). Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: protection of membranefunction. Stroke.18:184-187. |
[25] | Hadjiconstantinou M, Neff NH (1998). GM1 Ganglioside: In Vivo and In Vitro Trophic Actions on Central Neurotransmitter Systems. J. Neurochem. 70(4): 1335—1345. |
[26] | Baker HJ, Jope RS (1985). Increased metabolism of acetylcholine in brain of cats with GM1 gangliosidosis. Brain Res. 343: 363-365. |
[27] | Jope RS, Baker HJ, Connor DJ (1986). Increased acetylcholine synthesis and release in brains of cats with GM1 gangliosidosis. J. Neurochem. 46: 1567-1572. |
[28] | Ferretti P, Borroni E (1986). Putative cholinergic- specific gaogliosides in guinea pig forebrain. J. Neunochem. 46: 1888-1894. |
[29] | Whittaker VP, Derrington EA, Borroni E (1992). Chol-l is a cholinergic marker in the human central nervous system. Neuroreport. 3: 341-344. |
[30] | Derrington E A Whittaker VP (1993). The cholinergic marker Chol- 1 is selectively localized in nerve terminals. Neuroreport. 4: 317-319. |
[31] | Derrington EA, Kelic S, Whittaker VP (1993). A novel cholinergic- specific antigen (Chol-2) in mammalian brain. Brain Res. 620: 16-23. |
[32] | Manev H, Costa E, Wroblewski JT, Guidotti A (1990). Abusive stimulation of excitatory amino acid receptors: a strategy to limit neurotoxicity. FASEB J. 4: 2789-2797. |
[33] | Pitto M, Raimondo F, Zoia C, Brighina L, Ferrarese C, Masserini M (2005). Enhanced GM1 ganglioside catabolism in cultured fibroblasts from Alzheimer patients. Neurobiol Aging. 26: 833-838. |
[34] | Okada T, Wakabayashi M, Ikeda K, Matsuzaki K (2007). Formation of toxic fibrils of Alzheimer’s amyloid β-protein-(1-40) by monosialoganglioside GM1, a neuronal membrane component. J. Mol. Biol. 371: 481-489. |
[35] | Ortiz A, MacDonall JS, Wakade CG, Karpiak SE (1990). GM1 ganglioside reduces cognitive dysfunction after focal cortical ischemia. Pharmacol Biochem Behav. 37(4): 679–684. |
[36] | Dunbar GL, Lescaudron LL, Stein DG (1993). Comparison of GM1 ganglioside, AGF2, and D-amphetamine as treatments for spatial reversal and place learning deficits following lesions of the neostriatum. Behav Brain Res. 54(1):67-79. |