[1] | M. Henze, P. Harremoës, J. Jansen and E. Arvin, “Wastewater Treatment,” Biological and Chemical Processes, 2nd ed., Berlin: Springer Verlag, 1996. |
[2] | K. R. Muske and J. B. Rawlings, “Model predictive control with linear models,” AIChE Journal, vol. 39, pp. 262-287, 1993. |
[3] | L. Kalra and C. Georgakis, “Effects of process nonlinearity on the performance of linear model predictive controllers for the environmentally safe operation of a fluid catalytic cracking unit,” Ind. Eng. Chem. Res, vol. 33, pp.3063-3069, 1994. |
[4] | I. Dones, F. Manenti, H. A. Preisig and G. Buzzi-Ferraris, “Nonlinear model predictive control: A self-adaptive approach”. Ind. Eng. Chem. Res., vol. 49, no. 10, pp. 4782 – 4791, 2010. |
[5] | P. Potočnik and I. Grabec, “Nonlinear model predictive control of a cutting process”. Neurocomputing, vol. 43, pp. 107 – 126, 2002. |
[6] | C. Su and Y. Wu, “Adaptive neural network predictive control based on PSO algorithm,” Chinese Control and Decision Conference, Guilin, China, June 17-19, pp. 5829 – 5833, 2009. |
[7] | E. F. Camacho and C. Bordons, “Model Predictive Control”. 2nd ed., London: Springer-Verlag, 2007. |
[8] | M. J. Grimble and A. W. Ordys, “Predictive control for industrial applications”. Annual Reviews in Control, vol. 25, pp. 13-24, 2001. |
[9] | J. M. Maciejowski, “Predictive Control with Constraints”. England: Pearson Education Limited, 2002. |
[10] | Y. Jin and C. Su, “Adaptive model predictive control using diagonal recurrent neural network”. Fourth Int’l. Conf. on Natural Computation, Jinan, Oct. 18-20, 2008, pp. 276 – 280, 2008. |
[11] | F. S. Mjalli, “Adaptive and predictive control of liquid-liquid extractors using neural-based instantaneous linearization technique”. Chem. Eng. Technol., vol. 29, no. 5, pp. 539 – 549, 2006. |
[12] | K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks”. IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 4 – 27, 1990. |
[13] | M. Nørgaard, O. Ravn, N. K. Poulsen and L.K. Hansen, “Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook”. London: Springer-Verlag., 2000. |
[14] | Omidvar, O. M. and Elliott, D. L. (Feb., 1997) “Neural systems for control”. Academic Press, San Diego. [Online] Available:http://www.isr.umd.edu/~delliot/NeuralSystemsForControl.pdf. |
[15] | K. Salahshoor, E. Safari and M. F. Samadi, “Adaptive model predictive control of a hybrid motorboat using self-organizing GAP-RBF neural network and GA algorithm”. 2nd IEEE Int’l Conf. on Adv. Computer Control, Shenyang, China, Mar. 27-29, 2010, pp. 588 – 592, 2010. |
[16] | J. Sarangapani, “Neural Network Control of Discrete-Time Systems”. Boca Raton: CRC Press, 2006. |
[17] | T. J. Spooner, M. Maggiore, R. Ordóñez and K. M. Passino, “Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques”. New York: John Wiley & Sons, 2002. |
[18] | G. I. Suárez, O. A. Ortiz, P. M. Aballay and N. H. Aros, “Adaptive neural model predictive control for the grape juice concentration process,” 2010 IEEE Int’l Conf. on Industrial Tech., Vi a del Mar, Mar. 14-17, pp. 57 – 63, 2010. |
[19] | D. W. Yu and D. L. Yu, “Multi-rate model predictive control of a chemical reactor based on three neural models”. Biochemical Engineering Journal, vol. 37, pp. 86 – 97, 2007. |
[20] | P. Guarneri, G. Rocca and M. Gobbi, “A neural network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities”. IEEE Trans. Neural Netw., vol.19, no. 9, pp. 1549 – 1563, 2008. |
[21] | U. Yüzgeç, Y. Becerikli, and M. Türker, “Dynamic neural-network-based model predictive control of an industrial baker’s yeast drying process”. IEEE Trans. Neural Networks, vol. 19, no. 7, pp. 1231 – 1242, 2008. |
[22] | C. H. Lu and C. C. Tsai, “Adaptive predictive control with recurrent neural network for industrial process: An application to temperature control of a variable-frequency oil-cooling machine”. IEEE Trans. Industrial Electronics, vol. 55, no. 3, pp. 1366 – 1375, 2008. |
[23] | R. Piotrowski, M.A. Brdys, K. Konarczak, K. Duzinkiewic and W. Chotkowski, “Hierarchical dissolved oxygen control for activated sludge processes”, Control Engineering Practice, vol. 16, pp. 114-131, 2008. |
[24] | T.T. Lee, F.Y. Wang, A. Islam and R.B. Newell, “Generic distributed parameter model control of a biological nutrient removal (BNR) activated sludge process,” Journal of Process Control, vol. 9, pp. 505-525, 1999. |
[25] | T.T. Lee, F.Y. Wang and R.B. Newell, “Advances in distributed parameter approach to the dynamics and control of activated sludge processes for wastewater treatment”, Water Research, vol. 40, pp. 853-869, 2006. |
[26] | I.Y. Smets, J.V. Haegebaert, R. Carrette and J.F. Van Impe, “Linearization of the activated sludge model ASM1 for fast and reliable predictions”, Water Research, vol. 37, pp. 1831-1851, 2003. |
[27] | V. A. Akpan (Jul., 2011): Development of new model adaptive predictive control algorithms and their implementation on real-time embedded systems, Ph.D. Dissertation, 517 pages. [Online] Available:http://invenio.lib.auth.gr/record/127274/files/GRI-2011-7292.pdf. |
[28] | J. B. Coop. (2000, Sept.). The COST Simulation Benchmark: Description and Simulation Manual (a product of COST Action 624 & COST Action 628. [Online]: http://www.ensic.inpl-nancy.fr/COSTWWTP/. |
[29] | Working Groups of COST Actions 632 and 624. (Apr., 2008). IWA Task Group on Benchmarking of Control Strategies for WWTPs:http://www.ensic.inplnancy.fr/benchmarkWWTP/Bsm1/Benchmark1.htm. |
[30] | G.C. Goodwin, K.S. Sin, Adaptive Filtering, Prediction and Control, Prentice-Hall, 1984. |
[31] | L. Lung, System Identification: Theory for the User. 2nd ed. Prentice-Hall, 1999. |
[32] | R. Chiong, Intelligent Systems for Automated Learning and Adaptation: Emerging Trends and Applications (Information Science Reference, 2010, chapter 4). |
[33] | K.S. Narendra and O.A. Driollet, Stochastic adaptive control using multiple estimation models. In Proc. of the 2001 American Control Conference (ACC2001), Arlington, VA, 25 – 27 June, 2001, pp. 1539 – 1544. |
[34] | J. Sjöberg and L. Ljung, Overtraining, regularization, and searching for minimum in neural networks, International Journal of Control, vol. 62: 1391-1408, 1995. |
[35] | V. A. Akpan and G. D. Hassapis, “Training dynamic feedforward neural networks for online nonlinear model identification and control applications”. International Reviews of Automatic Control: Theory & Applications, vol. 4, no. 3, pp. 335 – 350, 2011. |
[36] | M. Salgado, G. Goodwin, R. Middleton, Modified least squares algorithm incorporating exponential forgetting and resetting, Int. J. Control, vol. 47, no. 2, 477-491, 1988. |
[37] | R. Fletcher, Practical Methods of Optimization. 2nd ed. Wiley & Sons, 1987. |
[38] | J. Hertz, A. Krough and R. G. Palmer, “Introduction to the Theory of Neural Computing”, Redwood City, California: Addison-Wesley, 1991. |