[1] | K. Golla, J B. Epstein,and J. Robert. “Liver disease: Current perspectives on medical and dental management”. Medical management update, vol. 98 , No. 5 , November 2004. |
[2] | T.J. Liang, B .Rehermann, L.B. Seeff, J.H. Hoofnagle. “Pathogenesis, natural history, treatment, and prevention of hepatitis C.”.Ann Intern Med, pp132:296,vol.305 ,2000 |
[3] | P.J. Johnson. “Hepatocellular carcinomaa: is current therapy really altering outcome”. Gut, pp51:459, vol.62, 2002. |
[4] | M. S. Mabrouk, E. M. Hashem, A. Sharawy, ‘‘Statistical Approaches for Hepatocellular Carcinoma (HCC) Biomarker Discovery”, American Journal of Bioinformatics Research, Vol. 2 No. 6, pp. 102-109, 2012. |
[5] | M. S. Mabrouk, E. M. Hashem , A. Sharawy. “Discrete Stationary Wavelet Transform of Array CGH Data on Hepatocellular Carcinoma’’, Journal of Bioinformatics and Intelligent Control,vol.1,No 2,2013. |
[6] | Mitchell TM. Machine learning. Boston, MA: McGraw-Hill, 1997. |
[7] | C.Ding and H.Peng. ‘’Minimum redundancy feature selection from microarray gene expression data’’. In CSB ’03: Proceedings of the IEEE Computer Society Conference on Bioinformatics, pp 523, 2003. |
[8] | I. Guyon, J. Weston, S. Barnhill, and V.Vapnik. “Gene selection for cancer classification using support vector machines.” Machine Learning,vol.46(1-3),pp 389–422, 2002. |
[9] | K. B. Duan, J. C. Rajapakse, H. Wang, and F. Azuaje. “Multiple svmfor gene selection in cancer classification with expression data.” IEEE Trans Nanobioscience, vol.4(3), pp228–234, September 2005. |
[10] | H. Chai and C.Domeniconi.“An evaluation of gene selection methods for multi-class microarray data classification.”In Proceedings of the Second European Workshop on Data Mining and Text Mining in Bioinformatics, pp3:10, 2004. |
[11] | C. J. Burges. “A tutorial on support vector machines for pattern recognition.” Data Mining and Knowledge Discovery, vol 2(2), pp121:167, 1998. |
[12] | N. Cristianini and J.S. Taylor. “Support Vector Machines and other Kernel-based Learning Methods”. Cambridge University Press, 2000. |
[13] | K. P. Bennett and C. Campbell. “Support vector machines: hype or hallelujah” SIGKDD Explor. Newsl, vol.2, pp 1:13, 2000. |
[14] | V. N. Vapnik. ,Statistical Learning Theory. Wiley, 1998 . |
[15] | B. Sch¨olkopf, C. Burges, and A. Smola.“, Advances in Kernel Methods,Support Vector Learning,” 1998. |
[16] | J.Weston and C. Watkins. “Support vector machines for multi-class pattern recognition.” In Proceedings of the Seventh European Symposium on Artificial Neural Networks, pp219:224, April 1999. |
[17] | B. V. Ramana, M.S. Prasad , N. B. Venkateswarlu,” A Critical Study of Selected Classification algorithms for Liver Disease Diagnosis’’, International Journal of Database Management Systems (IJDMS), Vol.3, pp 111:114, May 2011. |
[18] | M.J. Sorich, J. O. Miners, R.A. McKinnon, D. A. Winkler, F. R. Burden, P.l A. Smith. “ Comparison of Linear and Nonlinear Classification Algorithms for the Prediction of Drug and Chemical Metabolism by HumanUDP-Glucuronosyltransferase Isoforms.” Journal of Chemical Information and Computer Sciences ,vol.43(6).pp2019:2024,2003 |
[19] | F. Markowetz. “Klassifikationmit support vector Machines”. http://lectures.molgen.mpg.de/statistik03/docs/Kapitel16.pdf, 2003. |
[20] | W. W. Chapman, M.Fizman, B. E. Chapman, and P. J. Haug, “A Comparison of Classification Algorithms to Automatically Identify Chest X-Ray Reports That Support Pneumonia “journal of biomedical informatics,vol.34,pp 4: 14,2001. |
[21] | J. David "Special Considerations in Interpreting Liver Function Tests". American Family Physician .vol.59 (8),pp. 2223:2230,1999. |
[22] | T. Mazda & W.L. Gyure “Assay of alkaline phosphatase isoenzymes by a convenient precipitation and inhibition methodology.” Chem Pharm Bull (Tokyo); vol.36 (5), pp.1814:1818, 1988. |