[1] | A. Boubaker, M. Frikha, K. Ouni, A. Ben Hamida, 2006, “Une approche hybride neuro-markovienne pour la reconnaissance phonétique dans un milieu bruité, ” 4th Int. Conf. JTEA 06, Hammamet, Tunisia. |
[2] | A. I. G-Moral, U. S-Urena, C. P-Moreno and F. D-Maria, 2011, “Data balancing for efficient training of hybrid ANN/HMM automatic speech recognition, ” IEEE trans. on audio, speech and lang. proc., Vol 19, No. 3, 468-481. |
[3] | A. P. Varga et al., “The NOISEX-92 – Study on the effect of additive noise on an automatic speech recognition,” Tech. Rep., DRA Speech Research Unit, 1992. |
[4] | D. L. Donoho, I. M. Johnston, 1995, “De-noising by soft-thresholding,” IEEE trans. Information theory, Vol. 41, No.3, 613-627. |
[5] | E. Trentin, M. Gori, 2003, “Robust combination of neural networks and Hidden Markov Models for speech recognition,” IEEE trans. on Neural net., Vol 14 , No. 6, 1519-1531. |
[6] | G. D. Formey, 1973, “The Viterbi Algorithm,”Proc. IEEE, (61), 7-13. |
[7] | H. Yi, P. C. Loizou, 2004, “Speech enhancement based on wavelet thresholding the multitaper spectrum,” IEEE Trans. Speech and Audio Processing, (12), No. 1, 59-67. |
[8] | H. Bourlard, C. J. Wellekens, 1990, “Links Between Markov Models and Multilayer Perceptrons,” IEEE Trans. on Pattern Analysis and Machine Intelligence, No. 12, 1167-1178. |
[9] | H. Bourlard, N. Morgan , 1993, “Continuous Speech Recognition by Connectionist Statistical Methods,” IEEE Trans. on Neural Networks, (4), No. 6, 893-909. |
[10] | H. Ketadbar and H. Bourlard, 2010, “Enhanced phone postoriors for improving speech recognition,” IEEE Trans. on audio, speech and lang. process. , Vol. 18, No. 6, 1094-1106. |
[11] | H. Hermansky, 1990, “Perceptual linear predictive_PLP. analysis of speech,” J. Acoust. Soc. Amer., (87), No. 4, 1738–1752. |
[12] | J. A. Bilmes, 1998, “A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixtures and hidden Markov models, ” Tech. report 97-21, univ. of Berkely, USA. |
[13] | K. LEE and H. Hon, 1989, “Speaker-Independent Phone Recognition Using Hidden Markov Models,” IEEE Trans. on ASSP, (31), No. 11. |
[14] | L.R. Rabiner, 1989, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,’’ Proc. IEEE, (77), No. 2, 257–285. |
[15] | L. R. Rabiner and B. Juang, Fundamentals of Speech Recognition,” Prent. Hall, Engl. Cliffs, New Jersey, USA, 1993. |
[16] | M. Frikha, “Approche Markovienne pour une reconnaissance robuste de mots isolés dans un environnement acoustique variable, ’’ PhD thesis, National School of Engineering of Sfax, Feb. 2007, Tunisia. |
[17] | M. Frikha, A. Ben Hamida and M. Lahyani, 2011, “Hidden Markov Models (HMMs) isolated word recognizer with the optimization of acoustical analysis and modeling techniques,’’ Int. Jou. of Physical Sciences,Vol. 6(22), 5064-5074 |
[18] | R. P. Lippmann, 1987, “An introduction to computing with neural nets,” IEEE ASSP Magazine, 4-22. |
[19] | S.B. Davis and P. Mermelstein, 1980, “Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences,” IEEE Trans. Acoust. Speech Signal Process., (28), No. 4, 357– 366. |
[20] | S. Masmoudi, M. Frikha, A. Ben Hamida and M. Chtourou, 2010, “Efficient MLP constructive algorithm using neuron recruiting approach for isolated word recognition, ” Int. Jour. of Speech Technol., Vol. 14, No 1,1-10. |
[21] | S. Renals, N. Morgan, H. Bourlard. M. Cohen, H. Franco, 1994, “Connectionist Probability estimators in HMM Speech Recognition ,” IEEE Trans. on Speech and Audio Process., (2), No. 1, Part II, 161-174. |
[22] | O. Farooq, S. Datta, 2001, “Robust features for speech recognition based on admissible wavelet packet,” Electronics letters, (37), No. 5, 1554-1556. |
[23] | O. Farooq, S. Datta, 2003, “Wavelet-based denoising for robust feature extraction for speech recognition, ” IEEE Electronics letters, (39), No. 1, 163-165. |
[24] | P. Pujol, S. Pol, C. Nadeu, A. Hagen, H. Bourlard, 2005, “Comparison and Combination of Features in a Hybrid HMM/MLP and a HMM/GMM Speech Recognition System,” IEEE Trans. on Speech and Audio Processing, (13), No. 1, 14-22. |
[25] | The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMIT) Training and Test Data and Speech Header Software NIST Speech Disc CD1-1.1 October 1990. |
[26] | Z. Valsan, I. Gavat, B. Sabac, O. Cula, 2002, “Statistical and Hybrid Methods for Speech Recognition in Romanian,” Int. Journal of Speech Technology, No. 5, 259-268. |