[1] | Khasanov, K. and Ahmedov, A. (2021). Comparison of digital elevation models for the designing water reservoirs: a case study of Pskom water reservoir, E3S Web of Conferences, 264, 03058, doi:10.1051/e3sconf/202126403058. |
[2] | Al-Krargy, E. and Dawod, G. (2021). Optimum combinations of GGM and DEM models for precise national geoid development, Proceedings of Engineering and Technology Innovation, V. 18, pp. 15-24, doi:10.46604/peti.2021.6452. |
[3] | Dawod, G. and Ascoura, I. (2021). The Validity of open-source elevations for different topographic map scales and geomatics applications, Journal of Geographic Information System, V. 13, No. 2, pp. 148-165. |
[4] | Khalil, H. and Hassaan, M. (2017). Developing a reliable digital elevation model for climate change applications, case study: the Nile delta, Alexandria Research Center for Adaptation to Climate Change (ARCA) working paper No. 6, Alexandria University, Alexandria, Egypt. |
[5] | Sumanathna, A., Madurapperuma, B., Hangawatta, T., Pathirage, I., and Fernando, G. (2018). Developing coastal Digital Elevation Model (DEM) to indicate tsunami flooding topography in Arugam bay, Sri Lanka, Proceedings of the Institute of Professional Studies and Skills Development (IPSSD) Grand Day Online Conference, pp. 1-14. |
[6] | Wahid, A., Madden, M., Khalaf, F., and Fathy, I. (2016). Geospatial analysis for the determination of hydro-morphological characteristics and assessment of flash flood potentiality in arid coastal plains: A case in southwestern Sinai, Egypt, Earth Sciences Research Journal, 20(1), E1-E9, https:// doi.org/10.15446/esrj.v20n1.49624. |
[7] | Gaber, A., Darwish, N., and Koch, M. (2017). Minimizing the residual topography effect on interferograms to improve DInSAR results: Estimating land subsidence in Port-Said city, Egypt, Remote Sensing, 9, 752, doi:10.3390/rs9070752. |
[8] | Abdel-Aziz, T., Dawod, G., and Ebaid, H., (2020). DEMs and reliable sea level rise risk monitoring in Nile Delta, Egypt, Discover Sustainability, V. 1, No. 1, doi:10.1007/s43621-020-00006-7. |
[9] | Patel, A., Katiyar, S. and Prasad, V. (2016). Performance evaluation of different open source DEM by Differential Global Positioning System (DGPS), The Egyptian Journal of Remote Sensing and Space Sciences, No. 19, pp. 7-16. |
[10] | Kulp, S. and Strauss, B. (2016). Global DEM Errors under predict coastal vulnerability to sea level rise and flooding, Frontiers in Earth Science, 4:36. doi:10.3389/feart.2016.00036. |
[11] | Dawod, G. and Al-Ghamdi. K. (2017). Reliability of recent global digital elevation models for geomatics applications in Egypt and Saudi Arabia, Journal of Geographic Information System, V. 9, No. 6, pp. 685-698. |
[12] | Rabah, M., El-Hattab, A. and Abdallah, M. (2017). Assessment of the most recent satellite based digital elevation models of Egypt, NRIAG Journal of Astronomy and Geophysics, doi:10.1016/j.nrjag.2017.10.006. |
[13] | Mukherjee, S., Joshi, P., Mukherjee, S., and Ghosh, A. (2013). Evaluation of vertical accuracy of open source Digital Elevation Model (DEM), International Journal of Applied Earth Observation and Geoinformation, No. 21, pp. 205-217. |
[14] | Ouerghi, S., Abdalla ELsheikh, R. Achour, H. and Bouazi, S. (2015). Evaluation and Validation of Recent Freely-Available ASTER-GDEM V.2, SRTM V.4.1 and the DEM Derived from Topographical Map over SW Grombalia (Test Area) in North East of Tunisia, Journal of Geographic Information System, No. 7, pp. 266-27. |
[15] | Leon, J., Heuvelink, G., and Phinn, S. (2014). Incorporating DEM uncertainty in coastal inundation mapping, PLoS ONE, V. 9, No. 9: e108727, doi:10.1371/journal. pone.0108727. |
[16] | Hu, Z., Peng. J., Hou, Y. and Shan, J. (2017). Evaluation of Recently Released Open Global Digital Elevation Models of Hubei, China, Remote Sensing, 9, 262; doi: 10.3390/rs9030262. |
[17] | Wang, X., Holland, D., and Gudmundsson, H. (2018). Accurate coastal DEM generation by merging ASTER GDEM and ICESat/GLAS data over Mertz Glacier, Antarctica, Remote Sensing of Environment, No. 206, pp. 218-230. |
[18] | Abd-Elmotaal, H., Abd-Elbaky, M. and Ashry, M. (2013). 30 Meters Digital Height Model for Egypt, Presented at the VIII Hotine-Marussi Symposium, June 17-22, Rome, Italy. |
[19] | Jamali, A., Mustapha, A., and Mostafa, S. (2021) Prediction of sea level oscillations: Comparison of regression-based approach, Engineering Letters, V. 29, No. 3, pp. 1-6. |
[20] | Orejuela, I., Gonzalez, C., Guerra, X., Mora, E., and Toulkeridis, T. (2021) Geoid undulation modeling through the Cokriging method - A case study of Guayaquil, Ecuador, Geodesy and Geodynamics, No. 12, pp. 356-367. |
[21] | USGS (The US Geological Survey), (2022). SRTMGL1 V003, Available at: https://lpdaac.usgs.gov/products/srtmgl1v003/, Accessed 6 Jan, 2022. |
[22] | ASF (Alaska Satellite Facility) (2022). ALOS PLASAR – Radiometric Terrain Correction, http://985.so/wkh6, Accessed 6 Jan, 2022. |
[23] | Smith, R. and Berry, P. (2019). Altimeter Corrected Elevations, Version 2 (ACE2), A Technical Report, 22p, Columbia University, New York, USA. |
[24] | SRI (Survey Research Institute) (2018). Establishing accurate geodetic networks along the Egyptian coastlines, Internal Technical Report, No. 1. |
[25] | Brimicombe, A. (2010). GIS, environmental modeling and engineering, Second Edition, CRC Press, New York, USA, 361 pp. |
[26] | ESRI (Environmental Systems Research Institute) (2021). How krigging works, https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm, Accessed 12 Dec, 2021. |