[1] | O. Korup, J. Schmidt and M. J. McSaveney, "Regional relief characteristics and denudation pattern of the western Southern Alps, New Zealand", Geomorphology, vol. 71,no. 3/4,pp. 402-423, 2005. |
[2] | S. Saran, G. Sterk, P. Peters and V. K. Dadhwal, "Evaluation of digital elevation models for delineation of hydrological response units in a Himalayan watershed", Taylor & Francis Ltd, Geocarto International, vol. 25,no. 2,pp. 105-122, 2010. |
[3] | A. K. Saraf, P. R. Choudhury, B. Roy, B. Sarma, S. Vijay and S. Choudhury, "GIS based surface hydrological modelling in identification of groundwater recharge zones", Taylor & Francis Ltd, International Journal of Remote Sensing, vol. 25,no. 24,pp. 5759-5770, 2004. |
[4] | T. Korkalainen, A. Laurén, H. Kolvusalo and T. Kokkonen, "Impacts of peatland drainage on the properties of typical water flow paths determined from a digital elevation model", IWA Publishing, Hydrology Research, vol. 39,no. 5/6,pp. 359-368, 2008. |
[5] | N. Arnold, "A new approach for dealing with depressions in digital elevation models when calculating flow accumulation values", Sage Publications, Ltd., Progress in Physical Geography, vol. 34,no. 6,pp. 781-809, 2010. |
[6] | P. S. Datta and H. Schack-Kirchner, "Erosion Relevant Topographical Parameters Derived from Different DEMs--A Comparative Study from the Indian Lesser Himalayas", MDPI Publishing, Remote Sensing, vol. 2,no. 8,pp. 1941-1961, 2010. |
[7] | G. Gertner, G. Wang, S. Fang and A. B. Anderson, "Effect and uncertainty of digital elevation model spatial resolutions on predicting the topographical factor for soil loss estimation", Journal of Soil & Water Conservation, vol. 57,no. 3,pp. 6-6, 2002. |
[8] | H. Saadat, R. Bonnell, F. Sharifi, G. Mehuys, M. Namdar and S. Ale-Ebrahim, "Landform classification from a digital elevation model and satellite imagery", Geomorphology, vol. 100,no. 3/4,pp. 453-464, 2008. |
[9] | W. Wu, Y. Fan, Z. Wang and H. Liu, "Assessing effects of digital elevation model resolutions on soil–landscape correlations in a hilly area", Agriculture, Ecosystems & Environment, vol. 126,no. 3/4,pp. 209-216, 2008. |
[10] | P. B. Cachim and J.-M. Franssen, "Numerical modelling of timber connections under fire loading using a component model", Fire Safety Journal, vol. 44,no. 6,pp. 840-853, 2009. |
[11] | W. Tachajapong, J. Lozano, S. Mahalingam, X. Zhou and D. R. Weise, "Experimental and Numerical Modeling of Shrub Crown Fire Initiation", Taylor & Francis, Combustion Science and Technology, vol. 181,no. 4,pp. 618-640, 2009. |
[12] | B. Porterie, J.-L. Consalvi, J.-C. Loraud, F. Giroud and C. Picard, "Dynamics of wildland fires and their impact on structures", Combustion and Flame, vol. 149,no. 3,pp. 314-328, 2007. |
[13] | J. K. Adou, Y. Billaud, D. A. Brou, J. P. Clerc, J. L. Consalvi, A. Fuentes, A. Kaiss, F. Nmira, B. Porterie, L. Zekri, and N. Zekri, "Simulating wildfire patterns using a small-world network model", Ecological Modelling, vol. 221,no. 11,pp. 1463-1471. |
[14] | Y. Pérez, E. Pastor, A. Àgueda and E. Planas, "Effect of Wind and Slope When Scaling the Forest Fires Rate of Spread of Laboratory Experiments", Fire Technology. |
[15] | G. Konecny. (2003). Geoinformation Remote sensing, photogrammetry and geographic information systems |
[16] | S. Aggarwal. (2004). Satellite Remote Sensing and GIS Applications in Agricultural Meteorology. |
[17] | R. S. J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed., Hermisphere Publishing Corporation, Washington, 1992. |
[18] | F. P. I. D. P. DeWitt, Fundamentals of heat and mass transfer,Jhon Wiley & Sons, Inc., New York, 2002. |
[19] | L. Grant, "Diffuse and specular characteristics of leaf reflectance", Remote Sensing of Environment, vol. 22,no. 2,pp. 309-322, 1987. |
[20] | Online Available:http://visibleearth.nasa.gov/view.php?id=68605 |
[21] | A. Bovik, The Essential Guide to Image Processing,Elsevier Inc., Burlington, 2009. |
[22] | J. B. Kirkpatrick, J. B. Marsden-Smedley and S. W. J. Leonard, "Influence of grazing and vegetation type on post-fire flammability", Journal of Applied Ecology, vol. 48,no. 3,pp. 642-649, 2011. |
[23] | M. B. Bodí, J. Mataix-Solera, S. H. Doerr and A. Cerdà, "The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content", Geoderma, vol. 160,no. 3/4,pp. 599-607, 2011. |
[24] | C. Lampin-Maillet, M. Jappiot, M. Long, C. Bouillon, D. Morge and J.-P. Ferrier, "Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France", Journal of Environmental Management, vol. 91,no. 3,pp. 732-741, 2010. |
[25] | T. D. Hooker, J. M. Stark, U. Norton, A. J. Leffler, M. Peek and R. Ryel, "Distribution of ecosystem C and N within contrasting vegetation types in a semiarid rangeland in the Great Basin, USA", Springer Science & Business Media B.V., Biogeochemistry, vol. 90,no. 3,pp. 291-308, 2008. |
[26] | A. Mendoza, M. R. Garcia, P. Vela, D. F. Lozano and D. Allen, "Trace Gases and Particulate Matter Emissions from Wildfires and Agricultural Burning in Northeastern Mexico during the 2000 Fire Season", Air & Waste Management Association, Journal of the Air & Waste Management Association, vol. 55,no. 12,pp. 1797-1808, 2005. |
[27] | Q. Zhu, J. Gong and Y. Zhang, "An efficient 3D R-tree spatial index method for virtual geographic environments", ISPRS Journal of Photogrammetry & Remote Sensing, vol. 62,no. 3,pp. 217-224, 2007. |
[28] | R. G. Rehm, "The effects of winds from burning structures on ground-fire propagation at the wildland-urban interface", Taylor & Francis Ltd, Combustion Theory & Modelling, vol. 12,no. 3,pp. 477-496, 2008. |