[1] | Chandrasekhar, S. (1961). Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford, UK. |
[2] | Patil, P. R. and Vaidyanathan, G. (1983). On setting up of convection currents in a rotating porous medium under the influence of variable viscosity. International Journal of Engineering Science, 21, 123 – 130. |
[3] | Palm, E. and Tyvand, P. A. (1984). Thermal convection in a rotating porous layer. Journal of Applied Mathematics and Physics (ZAMP) 35, 122 – 123. |
[4] | Vadasz, P. (1994). Stability of free convection in a narrow porous layer subjected to rotation. International communications in Heat & Mass Transfer, 21, 881 – 890. |
[5] | Vadasz, P. (1998). Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. Journal of Fluid Mechanics, 276, 351 – 375. |
[6] | Vadasz, P. (2000). Flow and thermal convection in rotating porous media. In: K. Vafai (Ed.), Handbook of porous media. Marcel Dekker Inc., New York, 395 – 440. |
[7] | Vafai, K. (2005). Handbook of porous media, Boca Raton: Taylor & Francis (CRC). |
[8] | Vadasz, S. and Govender, S. (2001). Stability and stationary induced gravity and centrifugal forces in a rotating porous layer distant from the axis of rotation. International Journal of Engineering Science, 39, 715 – 732. |
[9] | Falsaperla, P. and Mulone, G. (2010). Stability in the rotating Benard problem with Newton-Robin and fixed heat boundary conditions. Mechanics Research communications. 37(1), 122 – 128. |
[10] | Kang, J., Xia, T., & Liu, Yingke. (2015). Heat transfer and flows of thermal convection in a fluid saturated rotating porous medium. Mathematical Problems in Engineering, Ariticle ID 905458, 11 pages. http://dx.doi.org/10.1155/2015/905458. |
[11] | Davison, P. A. (2016). Introduction to Magnetohydrodynamics. Cambridge: Cambridge University Press. |
[12] | Sutton, G. W. & Sherman, A. (1965). Engineering magnetohydrodynamics. New York: McGraw-Hill. |
[13] | Thirlby, R. (1970). Convection in internally heated layer. Journal of Fluid Mechanics, 44, 673 – 693. |
[14] | Gasser, R. and Kazimi, M. (1976). Onset of convection in a porous medium with internal heat generation. Journal of heat Transfer. Transactions of ASME 98, 49 – 54. |
[15] | Tasaka, Y. & Takeda, Y. (2005). Effects of heat source distribution on natural convection induced by internal heating. International Journal of Heat & Mass Transfer, 48(6), 1164 – 1174. |
[16] | Nour—Borujerdi, A. Noghrehabadi, A. R. and Rees, D. A. (2008). Influence of Darcy number on the onset of convection in a porous layer with a uniform heat source. International Journal of Thermal sciences 47, 1020 – 1025. |
[17] | Israel-Cookey, C., Omubo-Pepple, V. B., Obi, B. I., and Eze, L. C. (2010). Onset of thermal instability in a low Prandtl number fluid with internal heat in a porous medium. American Journal of Scientific and Industrial Research 1(1), 18 – 24. |
[18] | Nield, D. A & Bejan, A. (2006). Convection in porous media 5^{th} ed. New York: Springer. |
[19] | Alex, S. M., & Patil, P. R. (2000). Thermal instability in an anisotropic rotating medium. Heat & Mass Transfer, 36, 159 – 163. |
[20] | Yu, C. P and Shih, Y. D. (1980). Thermal instability of an internally heated fluid in a magnetic field. Physics of Fluids, 23, 411 – 412. |
[21] | Greenspan, H. P. (1980). The theory of rotating fields. London: Cambridge University Press. |
[22] | Israel-Cookey, C., Ebiwareme, L., and Amos, E. (2017). Effect of vertical magnetic field on the double diffusive convection in a horizontal porous layer with concentration based internal heat source. Asian research Journal of Mathematics, 7(1), 1 – 15. |
[23] | Horton, C. W & Rogers, F. T. (1945). Convection currents in a porous medium. Journal of Applied Physics. 16, 367 – 370. |
[24] | Lapwood, E. R. (1948). Convection of a fluid in a porous medium. Proceedings of Cambridge Philosophical Society. 44, 508 – 521. |