American Journal of Fluid Dynamics
p-ISSN: 2168-4707 e-ISSN: 2168-4715
2014; 4(4): 115-180
doi:10.5923/j.ajfd.20140404.01
Hassan Abdulmouti
Mechanical Engineering Program, College of Engineering, University of Sharjah
Correspondence to: Hassan Abdulmouti , Mechanical Engineering Program, College of Engineering, University of Sharjah.
Email: | ![]() |
Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved.
Bubble flow has received considerable attention in the last four decades and becomes a very important topic of research recently due to its large and wide range of applications value, and its effect on many processes and the efficiency of many devices. The motivation for studying bubble plumes is evident, from the fact that these plumes are encountered in a variety of engineering problems. In the past 10 years, the range of its application prompted scholars to do experiments and numerical research about this phenomenon. The motivation of the present work (part-II that is extended to part-I) is the dement to demonstrate, review and summarize the major finding of the previous research of the following points: 1) The techniques and the important models for the measurement of the dominated two-phase bubbly flow/ bubble plume parameters such as gas flow rate bubble size, bubble velocity and void fraction which are considerably important and play an important role in operational safety, process control and reliability of continuum processes of many engineering applications. 2) Turbulent bubbly flow structure. 3) Some important applications especially on bubbly two-phase flow/bubble plume and its associated surface flow since it can contribute to improvements in various directions. The techniques of gas injection have been widely utilized in many engineering fields. The surface flows generated by bubble plumes are considered key phenomena in many kinds of processes in modern industries. It is utilized as an effective ways to control surface floating substances on lakes, oceans, as well as in various kinds of reactors and industrial processes handling a free surface.
Keywords: Multiphase Flow, Bubble Plume, Bubble, Surface Flow, Turbulence, Buoyant Flow, Free Surface Flow, and Bubbly Flow
Cite this paper: Hassan Abdulmouti , Bubbly Two-Phase Flow: Part II- Characteristics and Parameters, American Journal of Fluid Dynamics, Vol. 4 No. 4, 2014, pp. 115-180. doi: 10.5923/j.ajfd.20140404.01.
![]() | Figure 1. Velocity field close to the air-bubble plume |
![]() | Figure 2. Velocity field in air-bubble plume |
![]() | Figure 3. Typical experimental set-up |
![]() | Figure 4. Samples of the recorded images at various gas volume flow rates |
![]() | Figure 5. The pathlines of the flow pattern at various gas volume flow rates |
[1] | Abdel-Aal H. K., Stiles G. B. and Holland C. D. 1966. Formation of Interfacial Area at High Rates Gas Flow Through Submerged Orifices. ALCHE J. 12, pp. 174-180. |
[2] | Abdelhakim Koudil, Ervin Amet and Yahia Belhares. CFD modelling of the gas-liquid flow in bubble columns using an Euler-Euler approach. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9 – 13, 2007. |
[3] | Abdulmouti H., Murai Y., Ohno Y., Yamamoto F. 2000. Measurement of Bubble Plume Generated Surface Flow Using PIV, Journal of the Visualization Society of Japan. Vol. 21. No. 2. Pp. 31-37. |
[4] | Absil LHJ (1995) Analysis of the laser Doppler measurement technique for application in turbulent flows. Ph. D. thesis, Delft University of Technology, The Netherlands |
[5] | Abouelwafa, M.S.A. and Kendall, E.J.M., 1979. Optimization of continuous wave nuclear magnetic resonance to determine in situ volume fractions and individual flowrates in 2 component mixtures. Rev. Sci. Instrum., 55, pp. 1545-1549. |
[6] | A. Castillejos and J. Brimacombe. Measurement of physical characteristics of bubbles in gas-liquid plumes: Part II. Local properties of turbulent air-water plumes in vertically injected jets. Metall. Trans. B, 18B, 659–671 (1987). |
[7] | Adrian FJ (1983) Laser velocimetry. In: Fluid mechanics measurements, Ch. 5. ed Goldstein, RJ, pp. 155-244, New York: Springer. |
[8] | A. Ferrante and S. Elghobashi. On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Physics of Fluids. VOLUME 15, NUMBER 2. 15, 315 (2003); doi: 10.1063/1.1532731. |
[9] | A Ferrante, S Elghobashi. Reynolds number effect on drag reduction in a microbubble-laden spatially developing turbulent boundary layer. Journal of Fluid Mechanics 543, 93-106. 2005. |
[10] | Ferrante, A.; Elghobashi, S. Effects of bubble diameter on drag reduction in a microbubble-laden spatially developing turbulent boundary layer over a flat plate. American Physical Society, 57th Annual Meeting of the Division of Fluid Dynamics, 21-23 November, 2004, Seattle, Washington, MEETING ID: DFD04. |
[11] | H. Castillejos, M.E. Salcudean, J.K. Brimacobe, Fluid flow and bath temperature destratification in gas-stirred ladles, Metall. Trans. B 20B (1989) 603-611. |
[12] | Ahmed, W.H., 2006. Capacitance Sensors for Void-Fraction Measurements and Flow-Pattern Identification in Air-Oil Two-Phase Flow. IEEE Sensors Journal, 6(5): 1153-1163. |
[13] | A. Larue de Tournemine, Etude expe´rimentale de l’effet du taux de vide en e´coulements diphasiques a` bulles, INPT thesis, Toulouse, France, 2001. |
[14] | Alfred W¨uest, Norman H. Brooks, and Dieter M. Imboden. Bubble plume modeling for lake restoration. Water Resources Research, 28(12):3235-3250, 1992. |
[15] | Allan R. S., Charles G. E. and Mason S. E. 1961. The Approach of Gas Bubbles to a Gas/Liquid Interface. J. Colloid Sci. 16, pp.150-165. |
[16] | Al Tawell A. M. and Landau J. 1977. Turbulence Modulation in Two-Phase Jets. Int. J. Multiphase Flow 3, pp. 341-353. |
[17] | Alexander B. Tayler. Experimental Characterisation of Bubbly Flow using MRI. Trinity College. Ph. d. Thesis. May 2011. University of Cambridge. |
[18] | A. M. Leitch and W. D. Baines 1998. Liquid Volume Flux in a Weak Bubble Plume. J. Fluid. Mech. 1989, Vol. 205. Pp. 77-98. Great Britain. |
[19] | Anagbo, P.E., Brimacombe, J.K., 1990. Plume characteristics and liquid circulation in gas injection through a porous plug. Metallurgical Transactions B 21B, 637-648. |
[20] | Arman Raoufi, Mehrzad Shams, Reza Ebrahimi, and Goodarz Ahmadi. Numerical simulation of collision of micro-bubbles in turbulent flow. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9 – 13, 2007. |
[21] | Asaeda, T., and Imberger, J. (1993). “Structure of bubble plumes in linearly stratified environments.”. J. of Fluid Mechanics, Vol. 249, pp. 35-57, 1992. |
[22] | A.W.G. de Vries. Path and Wake of a Rising Bubble. ISBN 90 365 15262. 2001. Enschede, The Netherlands. |
[23] | Baines W. D. and Hamilton G. F. 1959. On the Flow of Water Induced by a Rising Column of Air Bubbles. Intl Assoc. For Hydraulic Research, Proceedings of 8th Congress., Monteral, 24-29 August, pp. 7D1-7D17. |
[24] | Baines W. D. 1961. The Principles of operation of Bubbling Systems. Proc. Symp. Air Bubbling, Ottawa. |
[25] | Baines W. D. 1983. A Technique for the Direction Measurement of Volume Flux of a Plume. J. Fluid Mech. 132, 247-256. |
[26] | Baines W. D. and Leitch A. M. 1992. Destruction of Stratification by Bubble Plume. Journal of Hydraulic Engineering. Vol. 188, No. 4, April, 1992. No. 26602. Pp. 559-577. |
[27] | Baldyga, J. and Bourne, J. R. (1995). Interpretation of turbulent mixing using fractals and multifractals, Chem. Engi. Sci., 50, 381–400. |
[28] | Bankovic A., Currie, I. G. and Martin W. W. 1984. Laser-Doppler Measurements of Bubble Plumes. Phys. Fluids 27, pp. 348-355. |
[29] | Barberon, F. and Leblond, J., 2001. Intermittent two-phaseflow study by NMR. C. R. Acad. Sci. Paris, Chimie, 4, pp. 853-856. |
[30] | Bardina, J., Ferziger, J. H. and Reynolds, W. C. (1980) Improved Subgrid Models for Large Eddy Simulation. AIAA paper, 1980. |
[31] | Bhaga, D., and Weber, M., 1981, “Bubbles in Viscous Liquids: Shapes, Wakes and Velocities,” J. Fluid Mech., 105, pp. 61–85. |
[32] | Biesheuvel, A. and Wijngaarden, L. van 1984 Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mech. 148, 301-318. |
[33] | Bloch, F., Hansen, W.W. and Packard, M., 1946. Nuclear induction. Phys. Rev., 69, p. 127. |
[34] | Bogdan A. Nichita, Iztok Zun, John R. Thome, A Level Set Method Coupled With a Volume of Fluid Method for Modeling of Gas-Liquid Interface in Bubbly Flow. Journal of Fluids Engineering. August 2010, Vol. 132/081302-1. (2010 ASME). |
[35] | BOIVIN, M., SIMONIN, O. and SQUIRES, K. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235–263. |
[36] | Borchers, O., Busch, C., Sokolichin A., Eigenberger, G., 1999, Applicability of the standard k-ε turbulence model to the dynamic simulation of bubble columns. Part II: Comparison of detailed experiments and flow simulations, Chemical Engineering Science, 54, 5927-5935. |
[37] | Bouaifi, M. and Roustan, M. (1998). Bubble size and mass transfer coefficients in dual-impeller agitated reactors, Can. J. of Chem. Eng., 76, 390–397. |
[38] | Boulton-Stone J. M. and Blake J. R. 1993. Gas Bubbles Bursting at a Free Surface. J. Fluid Mech. 1993, Vol. 254, pp.437-466. |
[39] | Bove, S., 2005. Computational fluid dynamics of gas-liquid flows including bubble population balances. Ph.D. thesis, Esbjerg Institute of Engineering. |
[40] | Brevik, I., and R. Killie (1996), Phenomenological description of the axisymmetric air-bubble plume, Internat. J. Multiphase Flow, 22(3), 535-549. |
[41] | Brankovic A; Currie IG; Martin WW (1984) Laser-Doppler measurements of bubble dynamics. Phys Fluid 27: 348-355 |
[42] | Bruun, H. Hot Wire Anemometry: Principles and Signal Analysis. 1995 (Oxford University Press). Inc., New York, 1995. |
[43] | Bruun, H.H., 1996. Hot-film anemometry in liquid flows. Meas. Sci. Technol., 7, pp. 1301-1312. |
[44] | Bulson, P. S., "Bubble Breakwater with Intermittent Air Supply," Res. Rept. 9-2, Military Eng. Exper. Estab., Christchurch, Hampshire, England, 1962. |
[45] | Bulson, P. S., "Large Scale Bubble Breakwater Experiments," Res. Rept. 9-3, Military Eng. Exper. Estab., Christchurch, Hampshire, England, 1962. |
[46] | Bulson P.S. 1968. The Theory and Design of Bubble Breakwaters. Proc. 11th Conf. Coastal Engng, London. 995. |
[47] | B. Bunner and G. Tryggvason, Direct Numerical simulations of three-dimensional bubbly flows, Phys. Fluids 11, 1967-1969 (1999). |
[48] | Bunner, B. and G. Tryggvason, An examination of the flow induced by buoyant bubbles, J. Visualization 2, 153 (1999). |
[49] | Bunner, B., Large Scale Simulations of Bubbly Flow, Ph.D. dissertation (University of Michigan, 2000). |
[50] | Bunner, B. and G. Tryggvason, “Dynamics of homogeneous bubbly flows. Part 1: Rise velocity and microstructure of the bubbles,” J. Fluid Mech. 466, 17-52 (2002). |
[51] | Bunner, B. and G. Tryggvason, “Dynamics of homogeneous bubbly flows. Part 2: Velocity fluctuations,” J. Fluid Mech. 466, 53 (2002). |
[52] | Bunner, B. and G. Tryggvason, “Effect of bubble deformation on the properties of bubbly flows,” J. Fluid Mech. 495, 77 (2003). |
[53] | CADOT, O., DOUADY, S. and COUDER, Y. 1995 Characterization of the low-pressure filaments in a 3-dimensional turbulent shear-flow. Phys. Fluids 7, 630–646. |
[54] | Cao, J. and Ahmadi, G., Gas-Particle Two-Phase Flow in Horizontal and Inclined Ducts, Int. J.Engng. Sci, Vol. 38, pp. 1961-1981 (2000). |
[55] | Cartellier, A. and Riviere, N. 2001 Bubble-induced agitation and microstructure in uniform bubbly flows at small to moderate particle Reynolds numbers. Phys. Fluids 13, 2165–2181. |
[56] | Carlos M. García, Fabián A. Bombardelli, Gustavo C. Buscaglia1, Mariano I. Cantero, Lucas Rincón, Cheeta Soga, Andy Waratuke, Chris R. Rehmann, and Marcelo H. García. Turbulence in bubble plumes. HMEM. 2002. |
[57] | Carlos M. Garcı´a and Marcelo H. Garcı´a. Characterization of flow turbulence in large-scale bubble-plume experiments. Experiments in Fluids (2006). DOI10.1007/s00348-006-0161-6. |
[58] | Castello-Branco, M. A. S. C. and Schwerdtfeger, K. (1994) Large-Scale Measurements of the Physical Characteristics of Round Vertical Bubble Plumes in Liquids. Metallurgical and Materials Transactions B, 25B, 359-371, 1994. |
[59] | C. Boyer, A.-M. Duquenne, G. Wild, Measuring techniques in gas– liquid and gas–liquid–solid reactors, Chemical Engineering Science 57 (2002) 3185–3215. |
[60] | Centrale de Nantes. Shinnar, R. (1961). On the behaviour of liquid dispersions in mixing vessels, J. Fluid Mech., 10, 259–275. |
[61] | Cederwall, K., and J. D. Ditmars (1970), Analysis of Air-Bubble Plumes, W. M. Keck Laboratory of Hydraulics and Water Resources, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA. |
[62] | Chahine, G. L. 1994 Strong interactions bubble/bubble and bubble/flow. In IUTAM conference on bubble dynamics and interfacial phenomena (ed. J. R. Blake). |
[63] | Chaouki, J., Larachi, F. and Dudukovic, M.P., 1997. Noninvasive tomographic and velocimetric monitoring of multiphase flows. Ind. Eng. Chem. Res., 36, pp. 4476- 4503. |
[64] | Chapman, S. and Cowling, T. G. (1961). The Mathematical Theory of Non-uniform Gases, Cambridge University Press, Cambridge. |
[65] | Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., andKoumoutsakos, P., 2008, “Billion Vortex Particle Direct Numerical Simulations of Aircraft Wakes,” Comput. Methods Appl. Mech. Eng., 197, pp. 1296– 1304. |
[66] | Chen, J.J., Jamialahmadi, M. and Li, S.M. (1989) Effect of liquid depth on circulation in bubble columns: a visual study, Chem. Eng. Res. Des., 67, pp.203-207 |
[67] | Chen, S. and Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329–364. |
[68] | Chen, W. B., and R. B. H. Tan, ‘‘A Model for Steam Bubble Formation at a Submerged Nozzle in Flowing Subcooled Water,’’ Int. J. Heat and Fluid Flow, 22, 552. 2001. |
[69] | Cheng wen,Wan tian, Liu wen-hong, Hu bao-wei. Research on unsteady structure of bubble plume in an aeration tank [C], 2008, Conference on Multi-phase of Engineering thermo-physics in China, Qingdao |
[70] | Cheng Wen, Liu Wen-Hong, Hu Bao-Wei, Wan Tian. Experimental Study on Gasliquid Two-Phase Flows in An Areation Tank by Using Image Treantment Method [J]. Journal of Hydrodynamics. 2008, 20(5):650-655 |
[71] | Chesters A. K., Van Doorn M. and Goossens L. H. J. 1980. A General Model of Unconfined Bubble Plumes from an Extended Source. Int. J. Multiphase Flow 6, pp. 499-521. |
[72] | Chhabra, R.P. and Richardson, J.F. (1985), Co-current horizontal and vertically upward flow of gas and non-Newtonian liquid. Chapter 20 in Encyclopedia of Fluid Mechanics, Volume 3 (ed. N. Cheremisinoff), Gulf Publishing Co, Houston. [Extensive review of gas-liquid and gas-liquid-solid flows. It focuses on those liquids and liquid-solid slurries where the rheology shows deviation from Newtonian behavior] |
[73] | Cho, S. C., and W. K. Lee, ‘‘A Model for Steam Bubble Formation at a Submerged Orifice in a Flowing Liquid,’’ J. Chem. Eng. Jpn., 23, 180. 1990. |
[74] | Christopher E. Brennen. Fundamentals of Multiphase Flows. California Institute of Technolog. Cambridge University Press 2005. ISBN 0521 848040. |
[75] | Clark, N.N., T.P. Meloy, and R.L.C. Flemmer, 1985, "Predicting the Lift of Air-Lift Pumps in the Bubble Flow Regime," Chemsa Vol. 11, No.1, PP 14-17, January 1985. |
[76] | Clark, N.N., and R.L.C. Flemmer, 1985, "Predicting the Holdup in Two-Phase Bubble Upflow and Downflow using the Zuber and Findlay Drift-Flux Model," AIChE Journal, Vol. 31, No.3, PP 500-503, March, 1985. |
[77] | Clark, N.N., 1985, "Gas-Liquid Contacting in vertical Two Phase Flow," Industrial Engineering Chemistry Process Design and Development, Vol. 24, No.2, pp. 231-236. |
[78] | N. N. Clark and R. L. C. Flemmer, “On vertical downward two phase flow,” Chem. Eng. Sci. 39, 170 (1984). |
[79] | N. N. Clark and R. L. Flemmer, “Predicting the holdup in two-phase bubble upflow and downflow using the Zuber and Findlay drift-flux model,” AIChE J. 31, 500 (1985). |
[80] | Clay, P. H. (1940a). The mechanism of emulsion formation in turbulent flow. I: Experimental part, Proc. K. Ned. Akad. Wet., 43, 852–865. |
[81] | Clay, P. H. (1940b). The mechanism of emulsion formation in turbulent flow. II: Theoretical part and discussion, Proc. K. Ned. Akad. Wet., 43, 979–990. |
[82] | CLIMENT, E. 1996 Dispersion de bulles et modification du mouvement de la phase porteuse dans des ecoulements tourbillonnaires. PhD thesis, Inst. Nat. Polytech. Toulouse. |
[83] | CLIMENT, E. and MAGNAUDET, J. 1999 Large-scale simulations of bubble-induced convection in a liquid layer. Phys. Rev. Lett. 82, 4827–4830. |
[84] | Coleman, J.W., and Garimella, S., 1999, “Characterization of two-phase flow patterns in small diameter round and rectangular tubes”, Int. J. Heat Mass Transfer, vol. 42, pp. 2869_2881. |
[85] | Corneliussen, S., J.P. Couput, E. Dahl, E. Dykesteen, K.E. Frøysa, E. Malde, H. Moestue, P. Moksnes, L. Scheers and H. Tunheim, 2005. Handbook of Multiphase Metering. The Norwegian Society for Oil and Gas Measurement. |
[86] | Cornwell, K. and Kew, P.A., 1992, “Boiling in small parallel channels, Proc. of CEC Conference on Energy Efficiency in Process Technology”, Athens, October 1992, Paper 22, Elsevier Applied Sciences, pp. 624_638. |
[87] | C. Pozrikidis, Interfacial dynamics for Stokes flow, J. Comput. Phys. 169, 250 (2001). |
[88] | Coulaloglou, C. A. and Tavlarides, L. L. (1977). Description of interaction processes in agitated liquid-liquid dispersions, Chem. Eng. Sci., 32, 1289–1297. |
[89] | Craig, V.S.J., 2004. Bubble coalescence and specific-ion effects. Curr. Opin. Colloid In., 9, pp. 178-184. |
[90] | Crounse, B. C., Wannamaker, E. J., and Adams, E. E. (2007). “Integral model of a multiphase plume in quiescent stratification.” J. Hydraul. Eng., 133(1), 70–76. |
[91] | CROWE, C. T., TROUTT, T. and J.N.CHUNG 1996 Numerical models for two-phase turbulent flows. Ann. Rev. Fluid Mech. 28, 11–43. |
[92] | C. S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25, 220 (1977). |
[93] | Currie IG; Brankovic A (1987) Experimental aspects of turbulent two-phase flow research. Proc 2nd Int Conf on Laser Anemometry - Advances and Applications, Strathclyde, UK, pp. 453-463 448 |
[94] | Daidzic, N.E., Schmidt, E., Hasan, M.M. and Altobelli, S., 2005. Gas-liquid phase distribution and void fraction measurements using MRI. Nucl. Eng. Design, 235, pp. 1163-1178. |
[95] | Dandy, D. S. and Leal, L. G. (1989). Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers, J. Fluid Mec., 208, 161–192. |
[96] | Dang, P. and Schwaz, M. P. (1991) Simulation of Mixing Experiments in Cylindrical Gas-Stirred Tanks. Proc. Fourth International Symposium on Transport Phenomena in Heat and Mass Transfer, Sydney, Australia, July 14-19, 1991. |
[97] | Davidson, J. F. and Schuler, B.O.G., "Bubble Formation at an Orifice in a Viscous Liquid," Trans, of the Inst. of Chem. Eng., Vol. 38, p. 144, 1960. |
[98] | Davidson, J. F., and SchBuler, O. G. (1960a). Bubble formation at an orifice in an inviscid liquid. Transactions of the Institute of Chemical Engineering, 38, 335–342. |
[99] | Davidson, M. R. (1990) Numerical Calculations of Two-Phase Flow in a Liquid Bath with Bottom Gas Injection: The Central Plume. Appl. Math. Modelling, 14, 67-76, 1990. |
[100] | D. Balaji, D. Mazumdar, Numerical computation of flow phenomena in gas-stirred ladle systems, Steel Res. 62(1) (1991)16-23. |
[101] | Deckwer, W.D., 1985. Bubble column reactors. Wiley, Chichester. |
[102] | Deen, N.G., Hjertager, B.H. and Solberg, T. (2000) Comparison of PIV and LDA Measurement Methods Applied to the Gas-Liquid Flow in a Bubble Column, 10th Intl. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal. |
[103] | N.G. Deen, T. Solberg and B.H. Hjertager. Numerical Simulation of the Gas-Liquid Flow in a Square Crosssectioned Bubble Column. CHISA 14th Int. Congress of Chemical and Process Engineering, Praha, Czech Republic, August 27-31, 2000. |
[104] | Deen, N. G., Solberg, T., Hjertager, B. H., 2001, Large eddy simulation of gas-liquid flow in a square cross-sectioned bubble column, Chemical Engineering Science, 56, 6341-6349 |
[105] | Deen, N.G.. An Experimental and Computational Study of Fluid Dynamics in Gas-Liquid Chemical Reactors. Ph.D. thesis, Aalborg University Esbjerg, Denmark (2001) |
[106] | Denekamp, J., A. Kogan, and A. Solan, ‘‘On the Condensation of an Injected Vapor Bubble in a Subcooled Liquid Stream,’’ Prog. Heat Mass Transfer, 6, 179. 1972. |
[107] | E. Delnoij, J. Kuipers, and W. van Swaaij. Dynamic simulation of dispersed gas-liquid two-phase flow: Effect of column aspect ratio on the flow structure. Chem. Eng. Sci., 52, 3759–3772 (1997). |
[108] | Delnoij, E., Lammers, F. A., Kuipers, J. A. M., and van Swaaij, W. P. M. (1997a). Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model. Chemical Engineering Science, 52(9), 1429-1458. |
[109] | Delnoij, E., Kuipers, J. A. M., and van Swaaij, W. P. M. (1997b). Computational fluid dynamics applied to gas-liquid contactors. Chemical Engineering Science, 52(21/22), 3623. |
[110] | Delnoij, E., Kuipers, J. A. M., and van Swaaij, W. P. M. (1997c). Dynamic simulation of gas-liquid two-phase flow: Effect of column aspect ratio on the flow structure. Chemical Engineering Science, 52(21/22), 3759. |
[111] | Delnoj, E., Westerweel, J., Deen, N. G., Kuipers, J. A. M. and van Swaaij, W. P. M. 1999 Ensemble correlation PIV applied to bubble plumes rising in a bubble column. Chemical Engineering Science 54 (1999) 5159-5171. |
[112] | Delnoij, E., Kuipers, J.A.M.and van Swaaij, W. and Westerweel, J., 2000. Measurement of gas-liquid two-phaseflow in bubble columns using ensemble correction PIV. Chemical Engineering Science 55 (2000). Pp 3385-3395. PII: S0009-2509(99)00595- 3. |
[113] | Deschenes, L.A., Barrett, J., Muller, L.J., Fourkas, J.T. and Mohanty, U., 1998. Inhibition of bubble coalescence in aqueous solutions. 1. electrolytes. J. Phys. Chem. B, 1998, pp. 5115-51,193. |
[114] | Devanathan, N., Moslemian, D. and Dudukovic, M.P., 1990. Flow mapping in bubble columns using CARPT. Chem. Eng. Sci., 45, pp. 2285-2291. |
[115] | Devanathan, N., Dudukovic, M. P., Lapin, A., and LuK bbert, A. (1995). Chaotic flow in bubble column reactors. Chemical Engineering Science, 50(16), 2661. |
[116] | De Vries, J., Luther, S. and Lohse, D., 2002, Induced bubble shape oscillations and their impact on the rise velocity. European Physics Journal, B 29, 503. |
[117] | Dimotakis, P.E. 1986. Two dimensional shear layer entrainment. AIAA Journal 11, 1791–1796. |
[118] | D. Jamet, O. Lebaigue, N. Coutris, and J. M. Delhaye, The second gradient method for the direct numerical simulations of liquid–vapor flows with phase-change, J. Comput. Phys. 169, 624 (2001). |
[119] | D. Juric, Computations of Phase Change, Ph.D. dissertation (University of Michigan, 1996). |
[120] | D. Juric and G. Tryggvason, A front tracking method for dentritic solidification, J. Comput. Phys. 123, 127 (1996). |
[121] | D. Liu, E.E. Keaveny, M.R. Maxey, G.E. Karniadakis. Force-coupling method for flows with ellipsoidal particles. Journal of Computational Physics. Volume 228, Issue 10, 1 June 2009, Pages 3559–3581. |
[122] | D. Mazumdar, R.I.L. Guthrie, Hydrodynamic modelling of some gas injection procedures in ladle metallurgy systems, Metall. Trans. B 16B (1985) 83-90. |
[123] | D. Mazumdar, R.I.L. Guthrie, A comparison of three mathematical modelling procedures for simulating fluid flow phenomena in bubble-stirred ladles, Metall. Mat. Trans. B 25B (1994) 308-312. |
[124] | D. Mazumdar, R.I.L. Guthrie, The physical and mathematical modelling of gas stirred ladle systems, ISIJ International 35 (1) (1995) 1-20. |
[125] | Dmitri Kuzmin and Stefan Turek. Numerical Simulation of Turbulent Bubbly Flows. 3rd International Symposium on Two-Phase Flow Modelling and Experimentation Pisa, 22-24 September 2004 |
[126] | Dong, F., Z.X. Jiang, X.T. Qiao and L.A. Xu, 2003. Application of Electrical Resistance Tomography to Two-Phase Pipe Flow Parameters Measurement. Flow Measurement and Instrumentation, 14: 183-192. |
[127] | Dragana Arlov, Johan Revstedt and Laszlo Fuchs. A different approach of handling large bubbles in a square cross-sectioned bubble column combining Large Eddy Simulation with Lagrangian Particle Tracking. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9 – 13, 2007. |
[128] | Drain LE (1980) The laser Doppler technique. New York: Wiley |
[129] | D. A. Drew and R. T. J. Lahey, “Application of general constitutive principles to the derivation of multidimensional two-phase flow equations,” Int. J. Multiphase Flow 5, 243 (1979). |
[130] | Drew, D.A., Lahey, R.T., 1982. Phase distribution mechanisms in turbulent low-quality two-phase flow in circular pipe. J. Fluid Mech. 117, 91–106. |
[131] | Drew, D. A. 1983 Mathematical modeling of two-phase flow. Ann. Rev. Fluid Mech. 15, 261-291. |
[132] | D. R. H. Beattie, “Two-phase flow structure and mixing length theory,” Nucl. Eng. Des. 21, 46 (1972). |
[133] | Druzhinin, O.A. and Elghobashi, S., 1998, Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation. Physics of Fluids, 10, 685. |
[134] | Druzhinin, O. A. and Elghobashi, S. E. 1999. on the decay rate of isotropic turbulence laden with microparticles. Phys. Fluids 11, 602–610. |
[135] | Druzhinin, O.A. and Elghobashi, S., 2001, Direct numerical simulation of a three-dimensional spatially developing bubble-laden mixing layer with two-way coupling. Journal of Fluid Mechanics, 429, 23-61. |
[136] | Druzhinin, O. A. 2001 The influence of particle inertia on the two-way coupling and modification of isotropic turbulence by microparticles. Phys. Fluids 13, 3738– 3755. |
[137] | Durst F; ZareH M (1975) Laser-Doppler measurements in two-phase flows. Proc LDA-Symp, Copenhagen, Denmark, pp. 403-429 |
[138] | Durst F., Schonung B., Selanger K. and Winter M. 1986. Bubble Driven Liquid Flows. J. Fluid Mech. 170, pp. 53-82. |
[139] | Durst F; Melling A; Whitelaw JH (1987) Theorie und Praxis der Laser-Doppler-Anemometrie, Karlsruhe: G. Braun |
[140] | E. A. Ervin, Full Numerical Simulations of Bubbles and Drops in Shear Flow, Ph.D. dissertation (University of Michigan, 1993). |
[141] | E. A. Ervin and G. Tryggvason, The rise of bubbles in a vertical shear flow, ASME J. Fluid Eng. 119, 443 (1997). |
[142] | E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161, 35 (2000). |
[143] | Eckhard Krepper, Matthias Beyer, Thomas Frank, Dirk Lucas, Horst-Michael Prasser. Application of a Population Balance Approach for Polydispersed Bubbly Flows. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9 – 13, 2007. |
[144] | Elena Roitberg, Lev Shemer and Dvora Barnea. Cross Sectional Phase Distribution and Elongated Bubble Shape in Downward Gas-Liquid Pipe Flow. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9 – 13, 2007. |
[145] | Elghobashi, S. and Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids A 15, 1790- 1801. |
[146] | Irene Mazzitelli. Turbulent Bubbly Flow. 2003. Ph.D. thesis. University of Twente. The Netherlands. ISBN 90 365 19241. |
[147] | Eric Climent and Martin R. Maxey. The force coupling method: A flexible approach for the simulation of particulate flows. Transworld Research Network. Theoretical Methods for Micro Scale Viscous Flows, 2009: 000-000. ISBN: 978-81-7895-400-4 Editors: François Feuillebois and Antoine Sellier. |
[148] | E. Shams, J. Finn and S. V. Apte. A Numerical Scheme for Euler-Lagrange Simulation of Bubbly Flows in Complex Systems. International Journal For Numerical Methods In Fluids. 2010; 00:1-0 |
[149] | Esmaeeli, A. and Tryggvason, G. 1996 An inverse energy cascade in two-dimensional, low Reynolds number bubbly flows. J. Fluid Mech. 314, 315-330. |
[150] | Esmaeeli Asghar and Tryggvason, G Retar. (1998). Direct numerical simulation of bubbly flows. Part I- low Reynolds number arrays, J. Fluid Mech., vol. 377, pp. 313-345. Printed in the United Kingdom. |
[151] | Esmaeeli, A. and Tryggvason, G., Direct numerical simulation of bubbly flows. Part II- Moderate Reynolds number arrays, J. Fluid Mech., 385, 1999, 325-358. |
[152] | Esmaeeli, A. and Tryggvason, G. 1999 Direct numerical simulations of bubbly flows. Part 2. Moderate Reynolds number arrays. J. Fluid Mech. |
[153] | A. Esmaeeli and G. Tryggvason, “A direct numerical simulation study of the buoyant rise of bubbles at O (100) Reynolds number,” Phys. Fluids 17, 093303 (2005). |
[154] | E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow (Elsevier, New York, 1987). |
[155] | Fabian A. Bombardelli. Characterization of Coherent Structures from Parallel, L.E.S. Computations of Wandering Effects in Bubble Plumes. World Water Congress 2003. ASCE 2004. |
[156] | Fabian A. Bombardelli, Gustavo C. Buscaglia, Marcelo H. Garc´ıa, and Enzo A. Dari. Simulation of Wandering Phenomena in Bubble Plumes Via A K-ε Model and A Large-Eddy-Simulation (Les) Approach. Mec´anica Computacional Vol. XXIII G.Buscaglia, E.Dari, O.Zamonsky (Eds.) Bariloche, Argentina, November 2004 |
[157] | Fan, L.-S. (1989). Gas-Liquid-Solid Fluidization Engineering. Butterworth Series in Chemical Engineering, Boston, MA. |
[158] | Fan, F-G. and Ahmadi, G., Wall Deposition of Small Ellipsoids from Turbulent Air Flows-A Brownian Dynamics Simulation, J. Aerosol Sci., Vol. 31, pp. 1205-1229 (2000). |
[159] | F. Durst, A. M. K. P. Taylor and J. H. Whitelaw, Experimental 3and Numerical Investigation of Bubble-driven Laminar Flow in an Axisymmetric Vessel, International Journal of Multiphase Flow, 10 (1984) 557-569. |
[160] | Feng, J., Hu, H. H. and Joseph, D. D. 1994 Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. J. Fluid Mech. 261, 95-134. |
[161] | J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. 2. Couette and Poiseuilli flows, J. Fluid Mech. 277, 271 (1995). |
[162] | Frank, T.; Zwart, P.; Shi, J.-M.; Krepper, E.; Lucas, D.; Rohde, U. (2005): “Inhomogeneous MUSIG model – a population balance approach for polydispersed bubbly flows”, Int. Conf. Nuclear Energy for New Europe 2005, 05.-08.09.2005, Bled, Slovenia |
[163] | Frank, Th., Prasser, H.-M., Beyer, M., Al Issa, S. (2007) Gas-Liquid Flow around an obstacle in a vertical pipe – CFD simulation and comparison to experimental data; ICMF-07, paper 135 |
[164] | Friedl, M. J. (1998) Bubble Plumes and Their Interactions with the Water Surface. Diss. ETH No. 12667, 1998. |
[165] | FRIEDMAN, P. D. and KATZ, J. 2002 Mean rise of droplets in isotropic turbulence. Phys. of Fluids 14, 3059–3073. |
[166] | Frisch, U., Hasslacher, B., and Pomeau, Y. (1986). Lattice-gas automata for the Navier- Stokes equations, Phys. Rev. Lett., 56, 1505–1508. |
[167] | Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, C. M. Megaridis, and Z. Zhao,Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling, Phys. Fluids 7, 236 (1995). |
[168] | Fukushima, E., 1999. Nuclear magnetic resonance as a tool to study flow. Annu. Rev. Fluid Mech., 31, pp. 95-123. |
[169] | G. Agresar, J. J. Linderman, G. Tryggvason, and K. G. Powell, An adaptive, Cartesian, front tracking method for the motion, deformation and adhesion of circulating cells, J. Comput. Phys. 43, 346 (1998). |
[170] | Garner F. H., Ellis S. R. M. and Lacey J. A. 1954. The Size Distribution and Entrainment of Droplets. Trans. Instn Chem. Engrs 32, pp. 222-235. |
[171] | G. Brenn, H. Braeske, and F. Durst. Investigation of the unsteady two-phase flow with small bubbles in a model bubble column using phase-Doppler anemomentry. Chem. Eng. Sci., 57, 5143–5159 (2002). |
[172] | George, W. Alpert R., and Tamanini, F. (1977). Turbulence measurements in an axysimmetruc bouyant plume. Int. J. Heat Mass Tr. 20:1145-1154. |
[173] | Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. (1991) A Dynamical Subgrid-Scale Eddy Viscosity Model. Phys. Fluids A, 3 (7), 1760-1765, 1991. |
[174] | Gherson, P. and Lykoudis, P.S. Local Measurements in Two-Phase Liquid-Metal Magneto-Fluid-Mechanistic Flow. J. Fluid Mech. 147, 81-104 (1984). |
[175] | G. Hetsroni, M. Gurevich, A. Mosyak, R. Rozenblit, “Surface temperature measurement of a heated capillary tube by means of an infrared technique”, Meas. Sci.Technology. 14 (2003) 807_814. |
[176] | Gladden, L.F., Akpa, B.S., Anadon, L.D., Heras, J.J., Holland, D.J., Mantle, M.D., Matthews, S., Mueller, C., Sains, M.C. and Sederman, A.J., 2006. Dynamic MR imaging of single- and two-phase flows. Chem. Eng. Res. Des., 84(A4), pp. 272-281. 19 |
[177] | G. Larrignon, C. Narayanan and D. Lakehal. Effect of gravity on two-phase flow regime map in miniature pipes. |
[178] | International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9–13, 2007. |
[179] | Goodarz Ahmadi. Advanced Computational Model For Three-Phase Slurry Reactors. Submitted to U.S. Department of Energy National Energy Technology Laboratory. DOE DE-FG26-99FT-40584. October 2004 |
[180] | Goosens L. H. J. and Smith J. M. 1975. The Hydrodynamics of Unconfined Bubble Columns for Mixing Lakes and Reservoirs. Chem. Eng. Tech. 47, 951. PP. 249-261. |
[181] | Gore R. A. and Crowe C. T. 1989. Effect of Particle Size on Modulating Turbulent Intensity. Int. J. Multiphase Flow 15, pp. 279-285. |
[182] | Grevet, J. H., Szekely, J. and El-Kaddahn, N. 1981 An experimental and theoretical study of gas bubble driven circulation systems. Intl J. Heat Mass Transfer 25 (4), 487–497. |
[183] | Gross R. W. and kuhlman J. M. 1992. Three-Component Velocity Measurements in a Turbulent Recarculating Bubble-Driven Liquid Flow. Int. J. Multiphase Flow 18(3), 413-421. |
[184] | G. Tryggvason and S. O. Unverdi, Computations of three-dimensional Rayleigh-Taylor instability, Phys. Fluids A2, 656 (1990). |
[185] | G. Tryggvason and S. O. Unverdi, The shear breakup of an immiscible fluid interface, in Fluid Dynamics at Interfaces, edited by W. Shyy and R. Narayanan, (Cambridge Univ. Press, Cambridge, UK, 1999), pp. 142–155. |
[186] | G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan. A Front-Tracking Method for the Computations of Multiphase Flow. Journal of Computational Physics 169, 708–759 (2001) |
[187] | G. Yamanaka, H. Kikura, M. Aritomi, 2002, Study on the development of novel velocity profiles measurement method using ultrasonic time-domain cross-correlation, In Proc. 3rd Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, Lausanne, Switzerland, pp.109-114 |
[188] | G. Yamanaka, H. Murakawa, H. Kikura, M. Aritomi, 2003, The Novel Velocity Profile Measuring Method In Bubbly Flows Using Ultrasound Pulses, In Proc. 7th Int. Symp. On Fluid Control, Measurement and Visualization, Sorrento, Italy, 214(CD-ROM) |
[189] | Haberman, W. L. and Morton, R. K., "An Experimental Study of Bubbles Moving in Liquids," Trans ASCE Proc, Vol. 80, No. 387, Eng. Mech. Div., 1954. Soc. Civ. Eng., 80, 379-427. 2799, 227–252. |
[190] | Han, J. and Tryggvason, G. (1999). Secondary breakup of axisymmetric liquid drops. I: Acceleration by a constant body force, Phys. Fluids, 11, 3650–3667. |
[191] | J. Han and G. Tryggvason, Secondary breakup of liquid drops in axisymmetric geometry. I. Constant acceleration, Phys. Fluids 11, 3650 (1999). |
[192] | Harteveld, W. Bubble columns: Structures or stability? Ph.D. thesis, Delft University of Technology, the Netherlands (2005). |
[193] | Hassan Abdulmouti 2002. The Flow Patterns in Two Immiscible Stratified Liquids Induced by Bubble Plume. The International Journal of Fluid Dynamic. Vol. 6. Article 1. |
[194] | Hassan Abdulmouti 2002. Visualization of The Flow Patterns in Two Immiscible Stratified Liquids Due to Bubble Plume. The 10th International Symposium on Flow Visualization. Kyoto Japan. August 26-29. |
[195] | Hassan Abdulmouti 2003. Visualization and Image Measurement of Flow Structures Induced by a Bubbly Plume. Ph. D. thesis. Fukui University. |
[196] | Hassan Abdulmouti 2006. Bubbling Convection Patterns in Immiscible Two-phase Stratified Liquids. International Journal of Heat Exchangers (IJHEX). Vol. VII. No. 1. Pp. 123-143. ISSN 1524-5608. June 2006. |
[197] | Hassan Abdulmouti. Surface Flow Generation Mechanism Induced by Bubble Plume. Yanbu Journal of Engineering and Science (YJES). Second issue. PS-M02-28 (50-67). 2011. |
[198] | Hassan Abdulmouti. The Principle of Bubbly Flow and Its Application Especially to Oil Fence. Alzahrawi Encyclopedia for Arab Engineer. 1, 11, 2012. |
[199] | Hassan Abdulmouti. The Principle and Classification of PIV. Alzahrawi Encyclopedia for Arab Engineer. 19, 9, 2012. |
[200] | Hassan Abdulmouti. Particle Imaging Velocimetry (PIV) Technique: Principles and Application. Yanbu Journal of Engineering and Science (YJES). ISSN: 1658-5321. Vol. 6, April 2013. |
[201] | Hassan Abdulmouti. Particle Imaging Velocimetry (PIV) Technique: Principles, the typically used methods, classification and applications. Scholar's Press. ISBN-13: 978-3-639-51249-6. 6 March, 2013. |
[202] | Hassan Abdulmouti. Measurement of Flow Structures Induced by a Bubbly Plume Using Visualization, PIV and Image Measurement. Scholar's Press. ISBN-13: 978-3-639-51490-2. 7, June, 2013. |
[203] | Hassan Abdulmouti. Bubbly Two-Phase Flow: Part I- Characteristics, Structures, Behaviors and Flow Patterns. Submitted for publication to American Journal of Fluid Dynamics. AJFD-109000073. 2014. |
[204] | Hassan Abdulmouti, Esam Jassim. Visualization and Measurements of Bubbly Two-Phase Flow Structure Using Particle Imaging Velocimetry (PIV). Annual International Interdisciplinary Conference, IIC. Azores, Portugal. 24 -26 April 2013. |
[205] | Hassan Abdulmouti and Tamer Mohamed Mansour. The Technique of PIV and Its Applications. 10th International Congress on Liquid Atomization and Spray Systems (ICLASS-2006). Aug. 27-Sept. 1. Kyoto, Japan. 2006. |
[206] | Hassan Abdulmouti and Tamer Mohamed Mansour. Bubbly Two-Phase Flow and Its Application. 10th International Congress on Liquid Atomization and Spray Systems (ICLASS-2006). Aug. 27-Sept. 1. Kyoto, Japan. 2006. |
[207] | Hassan Abdulmouti, Fujio Yamamoto, Yuichi Murai, Yasuhiro Kobayashi, 1997. Research and Development for a New Bubble Curtain Type of Oil Fence. Journal of the Visualization Society of Japan. vol. 17 suppl. No. 1. Pp. 239~242. |
[208] | Hassan Abdulmouti, Yuichi Murai, junichi Ohat, Fujio Yamamoto 1998. PIV Measurement and Numerical Analysis of Flow around Bubble Curtain published in preprint of (J.S.M.E.) Japanese Society of Mechanical Engineer. No. 987-1. pp. 83~84. |
[209] | Hassan Abdulmouti, Yuichi Murai, junichi Ohat, Fujio Yamamoto 1999. PIV Measurement of Surface Flow Induced by Bubble Curtain. Journal of the Visualization Society of Japan. Vol. 19 Suppl. No. 1. Pp.239~242. |
[210] | Hassan Abdulmouti, Yuichi Murai, junichi Ohat, Fujio Yamamoto 1999. PIV Measurement of Bubbly Flow Interaction with Water Surface. Journal of the Visualization Society of Japan. Vol. 19. Suppl. No. 2. Pp.209-210. |
[211] | Hassan Abdulmouti Yuichi Murai, Ohno Yasushi, Fujio Yamamoto 2001. Measurement of Bubble Plume Generated Surface Flow Using PIV, Journal of the Visualization Society of Japan. Vol. 21. No. 2. Pp. 31-37 |
[212] | Hassan, Y. A., Blanchat, T. K., Seeley, Jr., C. H. and Canaan, R. E. 1992 Simultaneous velocity measurements of both components of a two-phase flow using particle image velocimetry. Intl J. Multiph. Flow 18 (3), 371–395. |
[213] | H. Chaumat, A.-M. Billet-Duquenne, F. Augier, C. Mathieu, H. Delmas, Application of the double optic probe technique to distorted tumbling bubbles in aqueous and organic liquid, Chemical Engineering Science 60 (2005) 6134–6146. |
[214] | H. Chaumat, A.M. Billet-Duquenne, F. Augier, C. Mathieu, H. Delmas. On the reliability of an optical fibre probe in bubble column under industrial relevant operating conditions. Experimental Thermal and Fluid Science Volume 31, Issue 6, May 2007, Pp 495–504. |
[215] | Henry, C.L., Dalton, C.N., Scruton, L. and Craig, W.S.J., 2007. Ion-specific coalescence of bubbles in mixed electrolyte solutions. J. Phys. Chem. C, 111, pp. 1015-1023. |
[216] | Henry, C.L., Karakashev, S.I., Nguyen, P.T. and Craig, V.S.J., 2009. Ion specific electrolyte effects on thin film drainage in no aqueous solvents propylene carbonate and formamide. Langmuir, 25, pp. 9931-9937. |
[217] | HERNAN, M.A. and JIMENEZ, J. 1982 Computer Analysis of a high speed film of the plane turbulent mixing layer. J. Fluid Mech. 119, 323–345. |
[218] | He, X. and Luo, L. (1997). A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 55, R6333–R6336. |
[219] | H. H. Hu, N. A. Patankar, and M. Y. Zhu, Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eularian technique, J. Comput. Phys. 169, 427 (2001). |
[220] | Hibiki, T., Ishii, M., and Xiao, Z. Axial interfacial area transport of vertical bubbly flows. Int. J. Heat and Mass Transfer, Vol. 44, 1869-1888 (2001) |
[221] | Hibiki, T., Goda, H., Kim, S., Ishii, M. and Uhle, J., 2003. Experimental study on interfacial area transport of a vertical downward bubbly ow. Exp. Fluids, 35, pp. 100-111. |
[222] | Hideki Murakawa, Hiroshige Kikura, Masanori Aritomi. Application of Multi-Wave Tdx For Multi-Phase Flow Measurement. 4th International Symposium on Ultrasonic Doppler Method for Fluid Mechanics and Fluid Engineering Sapporo, 6.-8. September, 2004. |
[223] | Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J., 1, 289–295. |
[224] | H.-J. Park, W.-J. Yang, Turbulent two-phase mixing in gas-stirred ladle systems for continuous casting applications, Num. Heat Transfer A 31 (1997) 493-515. |
[225] | Holland, D.J., Blake, A., Tayler, A.B., Sederman, A.J. and Gladden, L.F., 2011. A Bayesian approach to characterising multi-phase flows using magnetic resonance: Application to bubble flows . J. Magn. Reson., 209, pp. 83-87. |
[226] | Hoult D. P. Oil on the Sea. Plenum, 1969. |
[227] | Hnat, J., and Buckmaster, J., 1976, “Spherical Cap Bubbles and Skirt Formation,” Phys. Fluids, 19, pp. 182–194. |
[228] | H. S. Udaykumar, R. Mittal, and W. Shyy, Computation of solid–liquid phase fronts in the sharp interface limit on fixed grids, J. Comput. Phys. 153, 535 (1999). |
[229] | Hubert Chanson. Air-Water Bubbly Flows: Theory and Applications. Ph. d. thesis. School of Engineering. The University of Queensland. January 1999. |
[230] | HUNT, J. C. R., PERKINS, R. J. and FUNG, J. C. H. 1997 Review of the problems of modelling disperse two-phase flows. Multiphase Science and Technology 8, 595 – 643. |
[231] | H. Zhang and G. Ahmadi, "Aerosol Particle Removal and Re-entrainment in Turbulent Channel Flows," 18th Annual Conference of the American Association for Aerosol Research, AAAR '99, Tacoma. WA, October 11-15, 1999. |
[232] | H. Zhang and G. Ahmadi, F. Fan and J.B. McLaughlin, "Analysis of the Motion of Ellipsoidal Particle in Turbulent Channel Flows," 52st Annual Meeting of American Physical Society, Division of Fluid Dynamics, New Orleans, LA, November 21-23, 1999. |
[233] | Iguchi, M., Takeuchi, H. and Morita, Z. (1991) The Flow Field in Air-Water Vertical Bubbling Jets in a Cylindrical Vessel. ISIJ International, 31 (3), 246-253, 1991. |
[234] | Iguchi, M., Kawabata, H., Nakajima, K. and Morita, Z. (1995) Measurement of Bubble Characteristics in a Molten Iron Bath at 1600 _C Using Electroresistivity Probe. Metallurgical and Material Transactions B, 26B, 67-74, 1995. |
[235] | Iguchi, M., Kondoh, T., Morita, Z., Nakajima, K., Hanazaki, K., Uemura, T. and Yamamoto, F. (1995) Velocity and Turbulence Measurements in a Cylindrical Bath Subject to Central Bottom Gas Injection. Metallurgical and Material Transactions B, 26B, 241-247, 1995. |
[236] | Iguchi, M., Shinkawa, M., Nakamura, H. and Morita, Z. (1995) Mean Velocity and Turbulence of Water Flow in a Cylindrical Vessel Agitated by Bottom Air Injection. ISIJ International, 35 (12), 1431-1437, 1995. |
[237] | Ihab Edward Gerges. Two-Phase Bubbly Flow Structure In Large Diameter Pipes. Master of Engineering Thesis. Cairo University). March, 1999. ISBN. 3 9005 0219 9807 9. |
[238] | I. Ismail, Areeba Shafquet and Mohd Noh Karsiti. Void Fraction Estimation by Using Electrical Capacitance Tomography and Differential Pressure in an Air-Water Co-Current Bubble Column. Australian Journal of Basic and Applied Sciences, 5(11): 1533-1541, 2011 |
[239] | Ishii, M., 1975. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris. |
[240] | Ishii, M. and Sun, X. Interfacial Characteristics of Two-phase Flow. Multiphase Science and Technology, Vol. 18, 1-29 (2006). |
[241] | Jacobs, H. R., H. Fannar, and G. C. Beggs, ‘‘Collapse of a Bubble of Vapor in an Immiscrible Liquid,’’ Proc. Sixth Int. Heat Transfer Conf., Toronto, 383. 1978. |
[242] | Jackson, R. The Dynamics of Fluidized Particles. Cambridge University Press, New York (2000). |
[243] | Jakobsen, H. A., Sannaes, B. H., Grevskott, S., and Svendsen, H. F. (1997). Modeling of vertical bubble-driven flows. Industrial and Engineering Chemistry Research, 36, 4052. |
[244] | Jamialahmadi, M. and Muller-Steinhagen, 1992. Effect of alcohol, organic acid and potassium chloride concentration on bubble size, bubble rise velocity and gas hold-up in bubble columns. Chem. Eng. J., 50, pp. 47-56. |
[245] | J. A. Sethian, Evolution, implementation, and application of level set and fast marching methods for advancing fronts, J. Comput. Phys. 169, 503 (2001). |
[246] | J. Glimm, J. W. Grove, X. L. Li, W. Oh, and D. H. Sharp, A critical analysis of Rayleigh–Taylor growth rates. J. Comput. Phys. 169, 652 (2001). |
[247] | J.H. Grevet, J. Szekely, N. El-Kaddah, An experimental and theoretical study of gas bubble driven circulation systems, Int. J. Heat Mass Transfer 25 (4) (1982) 487-497. |
[248] | J. Hua and J. Lou. Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys., 222(2):769–795, 2007. |
[249] | Jiacai Lu and Gretar Tryggvason. Numerical study of turbulent bubbly downflows in a vertical channel. PHYSICS OF FLUIDS 18, 103302 (2006). American Institute of Physics. (DOI: 10.1063/1.2353399). |
[250] | J.M. Schweitzer, J.M. Bayle, T. Gauthier, Local gas hold-up measurements in fluidized bed and slurry bubble column, Chemical Engineering Science 56 (2001) 1103–1110. |
[251] | Johansen, S. T., Robertson, D. G. C., Woje, K. and Engh, T. A. (1988) Fluid-Dynamics in Bubble Stirred Ladles: Part I. Experiments. Metallurgical Transactions B, 19B, 745-754, 1988. |
[252] | Johansen, S. T. and Boysan, F. (1988) Fluid-Dynamics in Bubble-Stirred Ladles: Part II. Mathematical Modelling. Metallurgical Transactions B, 19B, 755-764, 1988. |
[253] | John R. Buchanan Jr, Seungjin Kim, Xiaodong Sun, and Mamoru Ishii. Multi-Objective Optimization Applied to the One Group Interfacial Area Transport Equations. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9–13, 2007. |
[254] | Johnson, B. D., and R. C. Cooke (1979), Bubble populations and spectra in coastal waters: A photographic approach, J. Geophys. Res., 84(C7), 3761–3766, doi: 10. 1029/JC084iC07p03761. |
[255] | Johnson, G. P., et al. (2000), Methodology, Data Collection, and Data Analysis for Determination of Water-Mixing Patterns Induced by Aerators and Mixers, 48 pp, U.S. Geological Survey. |
[256] | J. Lu, S. Biswas, and G. Tryggvason, “A DNS study of laminar bubbly flows in a vertical channel,” Int. J. Multiphase Flow 32, 643 (2006). |
[257] | Joe-Ming Chang, Fangang Tseng, and Ching-Chang Chieng. Nano-sized Bubble Detection by Atomic Force Microscopy. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9–13, 2007. |
[258] | Johnson, A. A. and Tezduyar, T. E. 1997 3D simulation of fluid-particle interactions with the number of particles reaching 100. Comput. Methods Appl. Mech. Engng 145, 301-321. (1997). |
[259] | JOK M. TANG. A Generalized Projected Cg Method With Applications to Bubbly Flow Problems. Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD Delft. 2009. |
[260] | Jones W. T. 1972. Air Barriers as Oil-Spill Containment Devices. Society of Petroleum Engineers Journal, pages 126-142, April 1972. |
[261] | Joshi, J. B., “Computational Flow Modelling and Design of Bubble Column Reactors,” Chem. Eng. Sci., 56, 5893 (2001). |
[262] | Joshi J, Vitankar V, Kulkarni A, Dhotre M, Ekambara K (2002) Coherent flow structures in bubble column reactors. Chem Eng Sci 57:3157–3183. |
[263] | J. Rodríguez-Rodríguez, Alberto Aliseda, Juan C. Lasheras. Flow structure and air entrainment near the leading edge of a deep water turbulent bore. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9–13, 2007. |
[264] | J. S. Groen, R. F. Mudde, H. E. A. Van Den Akker . On the application of LDA to bubbly flow in the wobbling regime. Experiments in Fluids 27 (1999) 435d449 ( Springer-Verlag 1999. |
[265] | D. Qian, J. B. Mclaughlin K, Sankaranarayanan, S. Sundaresan And K. Kontomaris. Simulation of Bubble Breakup Dynamics in Homogeneous Turbulence. Chem. Eng. Comm., 193:1038–1063, 2006. Taylor and Francis Group, LLC. ISSN: 0098-6445 print/1563-5201. DOI: 10.1080/00986440500354275. |
[266] | J. Qian, G. Tryggvason, and C. K. Law, A front tracking method for the motion of premixed flames, J. Comput. Phys. 144, 52 (1998). |
[267] | J. Qian, G. Tryggvason, and C. K. Law. An experimental and computational study of bounching and deforming droplet collision, American Institute of Aeronautics and Astronautics, Inc 1997. |
[268] | Joy Klinkenberg, Gaetano Sardina, H.C. de Lange and Luca Brandt. Numerical Simulations of laminar-turbulent transition in particle-laden channel flow. KTH Royal Institute of Technology. urn: nbn:se:kth:diva-42706.http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-42706. 2011. |
[269] | J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100, 335 (1992). |
[270] | Qian, Y. H., d’Humieres, D., and Lallemand, P. (1992). Lattice BGK models for Navier- Stokes equation, Europhys. Lett., 17, 479–484. |
[271] | Qian, D. (2003). Bubble motion, deformation and breakup in stirred tanks, Ph.D. diss., Clarkson University. |
[272] | Julia, J.E., Harteveld, W.K., Mudde, R.F. and Van den Akker, H.E.A., 2005. On the accuracy of the void fraction measurements using optical probes in bubbly flows. Rev. Sci. Instrum., 76, p. 035,103. |
[273] | J. Werther, Bubbles in gas fluidized beds, Transactions of the Institution of Chemical Engineers, Part I 52 (1974) 149–159. |
[274] | J. W. G. Tyrrell and P. Attard “Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force-separation data” Langmuir 2002, 18, 160-167. |
[275] | Kalkach-Navarro, S., Lahey, R.T., Drew, D.A. and Meyer, R., 1993. Interfacial area density, mean radius and number density measurements in bubbly two-phase flow. Nuc. Eng. Des., 142, pp. 341-351. |
[276] | Kalman, H., and A. Ullmann, ‘‘Experimental Analysis of Bubble Shapes During Condensation in Miscible and Immiscible Liquids,’’ J. Fluid Eng., 121, 496. 1999. |
[277] | Kang, I. S. and Leal, L. G. (1987). Numerical solution of axisymmetric, unsteady free-boundary problems at finite Reynolds number. I: Finite-difference scheme and its application to the deformation of a bubble in a uniaxial straining flow, Phys. Fluids, 30, 1929–1940. |
[278] | Kataoka, I., Serizawa, A., and Besnard, D., 1993, “Prediction of Turbulence Suppression and Turbulence Modeling in Bubbly Two-Phase Flow,” Nuclear Engineering and Design 141. 1993. 145-158. North-Holland. |
[279] | Kelkar, B.G., Phulgaonkar, S.R. and Shah, Y.T., 1983. The effect of electrolyte solutions on hydrodynamic and backmixing characteristics in bubble columns. Chem. Eng. J., 27, pp. 125-133. |
[280] | Kientzler C. F., Arons A. B., Blanchard D. C. and Woodcock A. H. 1954. Photographic Investigation of the projection of droplets by Bubbles Bursting at a water Surface. Tellus 6, 1-7. |
[281] | Kim, G.B. and Lee, S.J., 41. X-ray PIV measurements of blood flows without tracer particles. Exp. Fluids, 2006, pp. 195-200. |
[282] | Kim, S. Interfacial area transport equation and measurement of local interfacial characteristics. Ph.D. Thesis, School of Nuclear Engineering, Purdue University (1999). |
[283] | Kim, S., Sun, X, Ishii, M., Beus, S.G., and Lincon, F., Interfacial area transport and evaluation of source and sink terms for confined air-water bubbly flow. Nuclear Engineering and Design, Vol. 219, 61-75 (2002). |
[284] | Kirkpatrick R. D. and Lochett M. J. 1974. The Influence of approach Velocityon Bubble Coalescence. Chem. Engng Sci. 29, 2363-2373. |
[285] | K. H. Tacke, H. G. Schubert, D. J. Weber, and Klaus Schwerdtfeger. Characteristics of round vertical gas bubble jets. Metallurgical Transactions B, 16B(2):263-275, June 1985. |
[286] | Klas Cederwall and John D. Ditmars. Analysis of Air-Bubble Plumes. Report No. KH-R-24. September 1970. California Institute of Technology, Pasadena, CA, 1970. |
[287] | Kobus, Helmut E. 1968 Analysis of the flow induced by air-bubble system. In Proceedings of the11th Conference on Coastal Engineering, London, England, ch. 65, vol. 2, pp. 1016–1031.American Society of Civil Engineers, September 1968. |
[288] | Kocamustafaogullari, G. and Ishii, M. “Foundation of the interfacial area transport equation and its closure relations,” Int. J. Heat Mass Trans, vol. 38 (3), pp. 481–493, 1995. |
[289] | KOK, J. B. W. 1989 Dynamics of gas bubbles moving through liquid. Ph.D. thesis, University of Twente. |
[290] | KOK, J.B.W. 1993a Dynamics of a pair of gas bubbles moving through liquid part I. Theory. Eur. J Mech., B/Fluids 12, 515–540. |
[291] | KOK, J.B.W. 1993b Dynamics of a pair of gas bubbles moving through liquid part II. Experiment. Eur. J Mech., B/Fluids 12, 541–560. |
[292] | Kolmogorov, A. N. (1949). On the disintegration of drops in a turbulent flow, Dokl. Akad. Nauk SSSR, 66, 825–828. |
[293] | Koria, S. C. and Singh, S. (1989) Measurements on the Local Properties of the Vertical Heterogeneous Buoyant Plume. Steel Research, 60 (7), 301-307, 1989. |
[294] | Kortmann, R. W., et al. (1994), Aeration of stratified lakes: Theory and practice, Lake Reservoir Manage., 8(2), 99-120. |
[295] | Kortmann, R. W. (1994), Oligotrophication of Lake Shenipsit by layer aeration, Lake Reservoir Manage., 9(1), 94-97. |
[296] | Kouremenos, D.A. and Staicos, J. 1985. Performance of a small air-lift pump. Int. J. Heat Fluid Flow, Vol. 6, pp. 217-222. |
[297] | Kreshimir Zic, Hienz G. Stefan. Destratification Induced by Bubble Plumes. Water Quality Research Program. Technical Report W-94-3. June 1994. |
[298] | Krepper, E., Frank, Th., Lucas, D. Prasser, H.-M., Zwart, Ph. J. (2007) Inhomogeneous MUSIG Model – a Population Balance Approach for Polydispersed Bubbly Flows, ICMF-07, paper 375 |
[299] | Krepper, E., Weiss, F. -., Alt, S., Kratzsch, A., Renger, S. and Kästner, W. (2011), "Influence of air entrainment on the liquid flow field caused by a plunging jet and consequences for fibre deposition", Nuclear Engineering and Design, vol. 241, no. 4, pp. 1047-1054. |
[300] | Krishna, R. and van Baten, J.M., 1998. Simulating the motion of gas bubbles in a liquid. Nature, 398, p. 208. |
[301] | Krishna, R. and Sie, S.T., 2000. Design and scale-up of the Fischer-Tropsch bubble column slurry reactor. Fuel Proc. Tech., 64, pp. 73-105. |
[302] | Kristian Etienne Einarsrud and Iver Brevik. KINETIC Energy Approach To Dissolving Axisymmetric Multiphase Plumes. arXiv.org. physics. arXiv: 0804.2789v1. April 17, 2008. |
[303] | Krishna, R., J. M. van Baten, and M. I. Urseanu, “Three-Phase Eulerian Simulations of Bubble Column Reactors in the Churn-Turbulent Regime. A Scale-Up Strategy,” Chem. Eng. Sci., 55, 3275 (2000). |
[304] | Kubasch, J. H. 2001 Bubble hydrodynamics in large pools. Doctoral dissertation, ETH No. 14398, Zurich, Switzerland. |
[305] | Kulkarni, A.A., Joshi, J.B. and Ramkrishna, D., 2004. Determination of bubble size distributions in bubble columns using LDA. AIChE J., 50, pp. 3068-3084. |
[306] | KUMAR, S., MOSLEMIAN, D. and DUDUKOVIC, M. 1997 Gas-holdup measurements in bubble columns using computed tomography. A.I.Ch.E. J. 43, 1414–1425. |
[307] | Kuwagi, K. and Ozoe, H. (1999) Three-Dimensional Oscillation of Bubbly Flow in a Vertical Cylinder. International Journal of Multiphase Flow, 25, 175-182, 1999. |
[308] | Lamb, H. (1932). Hydrodynamics, Cambridge University Press, Cambridge. Dover, 6th edn. |
[309] | Lance, M. and Bataille J., 1991, Turbulence in the Liquid-phase of a uniform bubbly air water-flow. Journal of Fluid Mechanics, 222, Pp.95-118. |
[310] | Lance, M., Marrie, J.L., Bataille, J., 1991. Homogeneous turbulence in bubbly flows. J. Fluids Eng. 113, 295–300. |
[311] | LA PORTA, A., VOTH, G. A., MOISY, F. and BODENSCHATZ, E. 2000 Using cavitation to measure statistics of low-pressure events in large Reynolds number turbulence. Phys. Fluids 12, 1485–1496. |
[312] | Leblond, J., Javelot, S., Lebrun, D. and Lebon, L., 1998. Two-phase flow characterization by nuclear magnetic resonance. Nucl. Eng. Design, 184, pp. 229-237. |
[313] | Leighton, T.G., 1997. The acoustic bubble. Academic Press, San Diego. |
[314] | Le Gall, F., Pascal-Ribot, S. and Leblond, J., 2001. Nuclear magnetic resonance measurements of uctuations in air-water two-phase flow: pipe flow with and without `disturbing' section. Phys. Fluids, 13, pp. 1118-1129. |
[315] | LEGENDRE, D. and MAGNAUDET, J. 1998 The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81–126. |
[316] | Lessard, R.R. and Zieminski, S.A., 1971. Bubble coalescence and gas transfer in aqueous electrolytic solutions. Ind. Eng. Chem. Fundamen., 10, pp. 260-269. |
[317] | Levich V. G. (1962). Physicochemical Hydrodynamics, Section 87, Prentice Hall, Engelwood Cliffs, N.J. |
[318] | Lin, T.-J., J. Reese, T. Hong, and L.-S. Fan, “Quantitative Analysis and Computation of Two-Dimensional Bubble Columns,” AIChE J., 42, 301 (1996). |
[319] | L’VOV, V., OOMS, G. and POMYALOV, A. 2003 Effect of particle inertia on the turbulence in a suspension. Phys. Rev. E. |
[320] | T. J. Liu and S. G. Bankoff, “Structure of air-water bubbly flow in a vertical pipe. Part 2: Void fraction, bubble velocity and bubble size distribution,” Int. J. Heat Mass Transfer 36, 1061 (1993). |
[321] | T. J. Liu and S. G. Bankoff, “Structure of air water bubbly flow in a vertical pipe. Part I: Liquid mean velocity and turbulence measurements,” Int. J. Heat Mass Transfer 36, 1049 (1993). |
[322] | Liu, T.J., Int. Journal of Multiphase Flow, 219-1 (1993), 99. |
[323] | Liu, T. J., and Bankoff, S. G., 1993, “Structure of Air-Water Bubbly Flow in a Vertical Pipe- I,” Int. J. Heat Mass Transfer, 36, pp. 1049–1060. |
[324] | Liu, T. J., and Bankoff, S. G., 1993, “Structure of Air-Water Bubbly Flow in a Vertical Pipe- II,” Int. J. Heat Mass Transfer, 36, pp. 1061–1072. |
[325] | Lohrmann, A. Cabrera, R. and Kraus, N. (1994). Acoustic-Doopler Velocimeter (ADV) for Laboratory Use. Proc. of Fund. And Advancements in Hydraulic Measurements and Experimentation. et al. |
[326] | Lohrmann, A. and Cabrera, R. (1995). Direct measurement of Reynolds Stress with an Acoustic Doppler Velocimeter. Proc. of the IEEE Fifth Working Conference on Current Measurement.205-210. |
[327] | Longuet-Higgins, M. S. (1989). Monopole emission of sound by asymmetric bubble oscillations. Part 1: Normal modes. J. Fluid Mech., 201, 525–541. |
[328] | Lopez de Bertodano, M., Lee, S.J., Lahey, R.T., Jones, O.C., 1994. Development of a k-_ model for bubbly two-phase flow. J. Fluids Eng. 116, 128–134. |
[329] | Loth E, M. Taeibi-Rahni, and G. Tryggvason, Deformable bubbles in a free shear, Int. J. Multiphase Flow 23, 977 (1997). |
[330] | Loth E; Faeth GM (1989) Structure of underexpanded round air jets submerged in water. Int J Multiphase Flow 15: 589-603. |
[331] | Lou, Shi-Tao; Ouyang, Zhen-Qian; Zhang, Yi; Li, Xiao-Jun; Hu, Jun; Li, Min-Qian; Yang, Fu-Jia “Nanobubbles on solid surface imaged by atomic force microscopy” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Volume 18, Issue 5, September 2000, pp.2573-2575 |
[332] | Lunde, K. and Perkins, R.J., 1998. Shape oscillations of rising bubbles. Appl. Sci. Res., 58, pp. 387-408. |
[333] | Luo, H. and Svendsen, H.F. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE Journal, Vol. 42(5), 1225 – 1233 (1996). |
[334] | Lucas, D., Krepper, E., Prasser, H.-M., and Manera, A. Investigations on the stability of the flow characteristics in a bubble column. Chem. Engng. Tech. 29, 1066 (2006). |
[335] | Luther, S., Rensen, J., van den Berg, T.H. and Lohse, D., 2005, Data analysis for hot-film anemometry in turbulent bubbly flow. Experimental Thermal and Fluid Science, 29, 821–826; Luther, S. and Rensen, J., 2006, International Journal of Multiphase Flow. |
[336] | L. Xu, G. Chen, J. Li, J. Shao, Study on development of Particle Image Velocimetry[J]. The Advance of Dynamic 2003, 04: 533-540. |
[337] | Lynch, G.F. and Segel, S.L., 1977. Direct measurement of void fraction of a 2-phase fluid by nuclear magnetic resonance. Int. J. Heat Mass Transfer, 20, pp. 7-14. |
[338] | M.A. Bennett, S. P. Luke, X. Jia, R.M. West and R.A. Williams. Analysis and Flow Regime Identification of Bubble Column Dynamics. 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, April 14-17, 1999. |
[339] | MacIntyre F. 1972. Flow Patterns in Breaking Bubbles. J. Geophys. Res. 77, 5211-5228. |
[340] | Madsen, J. Computational and Experimental Study of Sprays from the Breakup of Water Sheets. Ph.D. thesis, Aalborg University Esbjerg, Denmark (2006) |
[341] | Magaud, F., Souhar, M., Wild, G. and Boisson, N., 2001. Experimental study of bubble column hydrodynamics. Chem. Eng. Sci., 56, pp. 4597-4607. |
[342] | Ma, G., F. Shi, and J. T. Kirby (2011), A polydisperse two-fluid model for surf zone bubble simulation, J. Geophys. Res., 116, C05010, doi:10.1029/ 2010JC006667. |
[343] | MAGNAUDET, J., RIVERO, M. and FABRE, J. 1995 Accelerated flows past a rigid sphere or a spherical bubble. J. Fluid Mech. 284, 97–135. |
[344] | Majumder, S. K., Kundu, G. and Mukherjee, D. (2005), "Mixing mechanism in a modified co-current downflow bubble column", Chemical Engineering Journal, vol. 112, no. 1-3, pp. 45-55. |
[345] | Majumder, S.K., Kundu, G. and Mukherjee, D., 2006. Bubble size distribution and gas-liquid interfacial area in a modified downow bubble column. Chem. Eng. J., 112, pp. 1-10. |
[346] | Manasseh, R., LaFontaine, R.F., Davy, J., Shepherd, I. and Zhu, Y.G., 2001. Passive acoustic bubble sizing in sparged systems. Exp. Fluids, 30, pp. 672-682. |
[347] | Mansfield, P., 1977. Multi-planar image formation using NMR spin echoes. J. Phys. C, 10, pp. L55-L58. |
[348] | Marco Simiano. Experimental Investigation of Large-Scale Three Dimensional Bubble Plume Dynamics. Swiss Federal Institute of Technology Zurich. Ph.d. thesis. Diss. ETH No 16220. 2005. |
[349] | Marco Simiano, D. Lakehal, M. Lance and G. Yadigaroglu. Turbulent transport mechanisms in oscillating bubble plumes. J. Fluid Mech. (2009), vol. 633, pp. 191–231. |
[350] | MARCHIOLI, C. and SOLDATI, A. 2002 Mechanisms for particle transfer and segregation in turbulent boundary layer. J. Fluid Mech. 468, 283–315. |
[351] | MarieH JL (1983) Investigation of two-phase bubble flow using laser Doppler anemometry. Phys Chem Hydrod 4: 103-118 |
[352] | Marie J. L. and Lance M. 1983. Turbulence Measurements in Two-Phase Bubbly Flows Using Laser Doppler Anemometry. IUTAM Symp. On Measuring Techniques in Gas-Liquid Two-Phase Flows, pp. 141-148. |
[353] | Marks, C. H., and Cargo, D.G. 1974. Field Tests of Bubble Screen Sea Nettle Barrier, J. Mar. Tech.. Pp. 33-39. |
[354] | Marrucci, G. and Nicodemo, L., 1967. Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes. Chem. Eng. Sci., 22, pp. 1257-1265. |
[355] | Marrucci, G., 1969. A theory of coalescence. Chem. Eng. Sci., 24, pp. 975-985.Martin, W.W. et al., Int. Journal of Multiphase Flow, 7 (1981) 439. |
[356] | Martin WW; Adbelmessih AH; Liska JJ; Durst F (1981) Characteristics of Laser Doppler signals from bubbles. Int J Multiphase Flow 7: 439-460 |
[357] | Martin WW; Chandler GM (1982) The local measurement of the size and velocity of bubbles rising in liquids. Appl Sci Res 38 : 239-246 |
[358] | Massimo Milelli, A Numerical Analysis Of Confined Turbulent Bubble Plumes. 2002. A dissertation submitted to the Swiss Federal Institute Of Technology Zurich. DISS. ETH No. 14799. |
[359] | Maxey, M., Chang, E. and Wang, L., 1994, Simulation of interactions between microbubbles and turbulent flows. Applied Mechanical Review, 46, no. 6, part 2, June S70–S74. |
[360] | Marco A. S. C. Castello-Branco and Klaus Schwerdtfeger. Characteristics of eccentric bubble plumes in liquids. Metallurgical and Materials Transactions B, 27B:231-239, 1996. |
[361] | Maxey, M. R. and Riley, J. J. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889. 1983. |
[362] | Mazzitelli, I. M. and Lohse, D. 2003 The effect of microbubbles on developed turbulence. Phys. Fluids 15 (1), L5–L8. |
[363] | Mazzitelli, I., Lohse, D. and Toschi, F., 2003, On the relevance of the lift force in bubbly turbulence. Journal of Fluid Mechanics, 488, 283. |
[364] | McDougall T. J. 1978. Bubble Plumes in Stratified Environments. Journal of Fluid Mechanics, Vol. 85 (4), 1978, pp. 655-672. |
[365] | Melville, W. K., and P. Matusov (2002), Distribution of breaking waves at the ocean surface, Nature, 417, 58–63. |
[366] | Melville, W. K., F. Veron, and C. J. White (2002), The velocity field under breaking waves: Coherent structures and turbulence, J. Fluid Mech., 454203–233. |
[367] | Michiyoshi, I., and Serizawa, A., 1986, “Turbulence in Two-Phase Bubble Flow,” Nucl. Eng. Des., 95, pp. 253–267. |
[368] | Milelli, M. (1998) A State of the Art on Bubble Plumes Modelling and Experiments – Confined Bubble Plumes . PSI internal report TM-42-98-30, ALPHA-829, 1-32, 1998. |
[369] | Milgram, J. H. 1983 Mean flow in round bubble plumes. J. Fluid Mech. 133, 345–376. |
[370] | Milica Ilic, Martin Wörner and Dan Gabrie Cacuci. Evaluation of energy spectra in bubble driven liquid flows from direct numerical simulations International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9 – 13, 2007. |
[371] | Millies, M., Drew, D.A., and Lahey, R.T., Jr. A first order relaxation model for the prediction of the local interfacial area density in two-phase flows. Int. J. Multiphase Flow, Vol. 22, 1073-1104 (1996). |
[372] | M. Millies, D. Mewes, Calculation of circulating flows in bubble columns, Chem. Engrg. Science 50 (13) (1995) 2093-2106. |
[373] | M. Ishii, S. S. Paranjape, S. Kim, and X. Sun, “Interfacial structures and interfacial area transport in downward two-phase bubbly flow,” Int. J. Multiphase Flow 30, 779 (2004). |
[374] | Mishima, K. and Ishii, M. Flow regime transition criteria for upward two-phase flow in vertical tubes. International Journal of Heat and Mass Transfer, Vol. 27, 723-737 (1984). |
[375] | Mohamed E. Shawkat, Chan Y. Ching and Mamdouh Shoukri. The Liquid Turbulence Kinetic Energy Budget in Two-Phase Bubbly Flows. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9–13, 2007. |
[376] | Monahan, S. M., and Fox, R. O. Effect of model formulation on flow-regime predictions for bubble columns. AIChE J. 53, 9 (2007). |
[377] | Morton, B. R., Taylor, G. I., and Turner, J. S. (1956). "Turbulent gravitational convection from maintained and instantaneous sources." Proc. Roy. Soc. A, 234,1-23. |
[378] | M. R. H. Nobari, Numerical Simulations of Drop Collisions and Coalescence, Ph.D. dissertation (University of Michigan, 1993). |
[379] | M. R. Nobari and G. Tryggvason, Numerical simulations of three-dimensional drop collisions, AIAA J. 34, 750 (1996). |
[380] | M. R. Nobari, Y.-J. Jan, and G. Tryggvason, Head-on collision of drops—A numerical investigation, Phys. Fluids 8, 29 (1996). |
[381] | M. Song and G. Tryggvason, The formation of a thick border on an initially stationary fluid sheet, Phys. Fluids 11, 2487 (1999). |
[382] | M. Sommerfeld (ed.), Bubbly Flows: Analysis, Modelling and Calculation, Springer, 2004, 191-201. |
[383] | M. S. Politano, P. M. Carrica, and J. Converti, “A model for turbulent polydisperse two-phase flow in vertical channels,” Int. J. Multiphase Flow 29, 1153 (2003). |
[384] | M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible two-phase flows, J. Comput. Phys. 114, 146 (1994). |
[385] | M. Taeibi-Rahni, E. Loth, and G. Tryggvason, DNS simulations of large bubbles in mixing layer flow, Int. J. Multiphase Flow 20, 1109 (1994). |
[386] | Mudde, R.F., Groen, J.S. and van den Akker, H.E.A., 1997, Liquid velocity field in a bubble column: LDA experiments. Chemical Engineering Science, 52, 4217-4224. |
[387] | Mudde, R.F., Simonin, O., 1999. Two- and three-dimensional simulations of a bubble plume using a two-fluid model. Chemical Engineering Science 54, 5061-5069. |
[388] | Mudde, Robert F. and Saito Takayuki, 2001, Hydrodynamical similarities between bubble column and bubbly pipe flow, J. Fluid Mech, 437, 203-228. |
[389] | Mudde, R. F. (2005). “Gravity-driven bubbly flows.” Annu. Rev. Fluid Mech., 37, 393–423. |
[390] | M. Utiger, F. Stuber, A.M. Duquenne, H. Delmas, C. Guy, Local measurements for the study of external loop airlift hydrodynamics, Canadian Journal of Chemical Engineering 77 (1999) 375–382. |
[391] | Murai Yuichi, Ohno Yasushi, Abdulmouti Hassan, Ohata Junichi, Yamamoto Fujio 1999. Numerical Prediction of a Horizontal Surface Flow Generated by Bubbles. The Asian Symposium on Multiphase Flow 1999 (ASMF’99) Osaka, Japan. Pp. 45-50. |
[392] | Murai, Yuichi, Abdulmouti Hassan, Ohno Yasushi, Ohta Junichi, Yamamoto Fujio 2000. Two-Phase Flow Induced by a Bubble Plume in the Vicinity of a Free Surface. Proceeding of ASME FEDSM 2000. ASME 2000 Fluid Engineering Division Summer Meeting. June 11-15, 2000, Boston, Massachusetts. FEDSM-11275, pp.1-6. |
[393] | Murai Yuichi, Ohno Yasushi, Abdulmouti Hassan, Yamamoto Fujio 2000. Article of Fluid Dynamic characteristics of oil fence using air bubbles “In order to reduce the damage of heavy oil leakage at sea”. Nature and Environment of The Sea of Japan Districts. The Memoirs of the Research and Education Center for Regional Environment, Fukui University. No. 7, pp. 63-68. |
[394] | Murai Yuichi, Ohno Yasushi, Bae Dae Seeok, Abdulmouti Hassan, Yamamoto Fujio 2001. Bubble-Generated Convection in Immiscible Two-phase Stratified Liquids. Proceeding of ASME FEDSM 2001, May29- June 1-18180. New Orleans U.S.A. |
[395] | Murai Yuichi, Ohno Yasushi, Abdulmouti Hassan, Yamamoto Fujio 2001. Flow in the Vicinity of Free Surface Induced By a Bubble Plume. JSME. 067, 657, B. |
[396] | Murai Y. and Matsumoto Y. 1996. Numerical Simulation of Turbulent Bubble Plumes Using Eulerian- Lagrangian Bubbly Flow Model Equation. Proc. Int. Symp. on Mathematical Modeling of Turbulent Flows pp. 233-238. |
[397] | Murai, Y., Matsumoto, Y., Yamamoto, F., Qualitative and quantitative flow visualization of bubble motions in a plane bubble plume [J]. J. Visualization. 2000,3, 27-35. |
[398] | MURAI, Y., KITAGAWA, A., SONG, X., OHTA, J. and YAMAMOTO, F. 2000a Inverse energy cascade structure of turbulence in bubbly flow (numerical analysis using Eulerian-Lagrangian model equations). JSME Int. J., Serie B 43, 197–205. |
[399] | MURAI, Y., MATSUMOTO, Y., SONG, X. and YAMAMOTO, F. 2000b Numerical analysis of turbulence structures induced by bubble buoyancy. JSME, Int. J., Serie B 43, 180–187. |
[400] | MURAI, Y., SONG, X., TAKAGI, T., ISHIKAWA, M., YAMAMOTO, F. and OHTA, J. 2000c Inverse energy cascade structure of turbulence in bubbly flow (PIV measurements and results). JSME Int. J., Serie B 43, 188–196. |
[401] | Nakagawa, M., Suzuki, Y., Aritomi, M. and Mori, M., Organized Multiphase flow Forum 2001 Fukushima, Japan, (in Japanese), 1-2, (2001). |
[402] | Nakagawa, M., Aritomi, M., Kumano, Y. and Mori, M., Investigation of Zigzag Rising Bubble Using Spinning Sphere Model. JSME Int. J., Vol.49, No.4 (2006). |
[403] | Nakagawa, M., Aritomi, M., Kumano, Y. and Mori, M., Identification of Aerodynamic Coefficients of Zigzag Rising Bubbles. Proceedings of 15th International Conference on Nuclear Engineering, ICONE15-10629 (2007). |
[404] | Nakagawa, M., Aritomi, M., Kumano, Y. and Mori, M., Unsteady Aerodynamic Analysis for Dynamic Turning of Zigzag Rising Bubbles. Nakagawa AKM-abstract- ICMF2007 b (2007). |
[405] | Nakoryakov, V.E., and O.N. Kashinsky, 1982, "Local Characteristics of Upward Gas-Liquid Flow," International Journal of Multiphase Flow, Vol. 7, pp 63-81. |
[406] | Nakoryakov, V.E., O.N. Kashinsky, and B.K. Kozmenko, 1986, "Experimental study of Gas-Liquid Slug Flow in a Small Diameter vertical Pipe," International Journal of Multiphase Flow, Vol. 12, No.3, pp. 337-355. |
[407] | Newitt D. M., Dombrowaski N. and Knelman F. H. 1954. Liquid Entrainment 1. The Mechanism of Drop Formation from Gas or Vapour Bubbles. Trans. Instn Chem. Engrs 32. Pp. 244-261. |
[408] | N. Lock, M. Jaeger, M. Medale, and R. Occelli, Local mesh adaptation technique for front tracking problems, Int. J. Numer. Meth. Fl. 28, 719 (1998). |
[409] | N.N. Clark, R. Turton, Chord length distributions related to bubble size distributions in multiphase flow, International Journal of Multiphase Flow 14 (1988) 413–424. |
[410] | N.P. Mazumdar, N. Islam, A. Chanda, A mathematical model for turbulent bubble plume, Physica Scripta 53 (1996) 575-581. |
[411] | Ohba K; Kishimoto I; Ogasawara M (1976a) Simultaneous measurement of local liquid velicity and void fraction in bubbly flows using a gas lawer - Part I: principle and measuring procedure. Technol Rep Osaka Univ 26: 547-556. |
[412] | Ohba K; Kishimoto I; Ogasawara M (1976b) Simultaneous measurement of local liquid velocity and void fraction in bubbly flows using a gas lawer - Part II: local properties of turbulent bubbly flow.Technol Rep Osaka Univ 27: 229-238 |
[413] | O. N. Kashinsky and V. V. Randin, “Downward bubbly gas-liquid flow in a vertical pipe,” Int. J. Multiphase Flow 25, 109 (1999). |
[414] | OOMS, G., GUNNING, J., POELMA, C. andWESTERWEEL, J. 2002 On the influence of the particles-fluid interaction on the turbulent diffusion in a suspension. Int. J. Multiphase Flow 28, 177–197. |
[415] | Orvalho, S., Ruzicka, M. and Drahos, J., 2009. Bubble columns with electrolytes: gas holdup andflow regimes. Ind. Eng. Chem. Res., 48, pp. 8237-8243. |
[416] | Panidis, Th. and Papailiou, D.D. The Structure of Two-Phase Grid Turbulence in a Rectangular Channel: an Experimental Study. Int. J. Multiphase Flow 26, 1369-1400 (2000). |
[417] | Pfleger, D., Gomes, S., Gilbert, N., Wagner, H.G., 1999. Hydrodynamic simulation of laboratory scale bubble columns: Fundamental studies of Eulerian-Eulerian modelling approach, Chemical Engineering Science, 54, 5091-5099 |
[418] | Pfleger, D., and S. Becker, “Modelling and Simulation of the Dynamic Flow Behavior in a Bubble Column,” Chemical Engineering Science. 56, 1737-1747 (2001). |
[419] | P. J. Shopov, P. D. Minev, I. B. Bazhekov, and Z. D. Zapryanov, Interaction of a deformable bubble with a rigid wall at moderate Reynolds numbers, J. Fluid Mech. 219, 241 (1990). |
[420] | Ploumhans, P., Winckelmans, G. S., Salmon, J. K., Leonard, A., and Warren, M. S., 2002, “Vortex Methods for Direct Numerical Simulation of Three- Dimensional Bluff Body Flows: Application to the Sphere at Re=300, 500, and 1000,” J. Comput. Phys., 178, pp. 427–463. |
[421] | POORTE, R. E. G. and BIESHEUVEL, A. 2002 Experiments on the motion of gas bubbles in turbulence generated by an active grid. J. Fluid Mech. 461, 127–154. |
[422] | Prasser, H.-M., Böttger, A., Zschau, J. A new electrode-mesh tomograph for gas-liquid flows. Flow Measurement and Instrumentation Vol. 9 111-119 (1998) |
[423] | Prasser, H.M., Scholz, D. and Zippe, C., 2001. Bubble size measurement using wire-mesh sensors. Flow Meas. Instr., 12(4), pp. 299-312. |
[424] | Prasser, H.M., Misawa, M. and Tiseanu, I., 2005. Comparison between wire-mesh sensor and ultra-fast x-ray tomograph for an air-water flow in a vertical pipe. Flow Meas. Instr., 16(2-3), pp. 73-83. |
[425] | Prasser, H.M., Beyer, M., Carl, H., Gregor, S., Lucas, D., Pietruske, H., Schutz, P. and Weiss, F.P., 2007. Evolution of the structure of a gas-liquid two-phase flow in a large vertical pipe. Nucl. Eng. Des., 237(15-17), pp. 1848-186. |
[426] | Prince, M. J. and Blanch, H. W. (1990). Bubble coalescence and break-up in air-sparged bubble columns, AIChE J., 36, 1485–1497. |
[427] | Purcell, E.M., Torrey, H.C. and Pound, R.V., 1946. Resonance absorption by nuclear magnetic moments in a sold. Phys. Rev., 69, pp. 37-38. |
[428] | Ranade, V. V. and Tayalia, Y. (2001), "Modelling of fluid dynamics and mixing in shallow bubble column reactors: Influence of sparger design", Chemical Engineering Science, vol. 56, no. 4, pp. 1667-1675. |
[429] | R. Cortez and M. Minon, The Blob projection method for immersed boundary problems, J. Comp. Phys. 161, 428 (2000). |
[430] | Rensen, J., and Roig, V. (2001). “Experimental study of the unsteady structure of a confined bubble plume.” Int. J. Multiphase Flow, 27(8), 1431–1449. |
[431] | Rensen, J., Luther, S., de Vries, J. and Lohse, D., 2005, Hot-film anemometry in bubbly flow I: bubble-probe interaction. International Journal of Multiphase Flow, 31, 285–301. |
[432] | Rensen, J., Luther, S. and Lohse, D., 2005, The effect of bubbles on developed turbulence. Journal of Fluid Mechanics, 538, 153–187. |
[433] | Reyes, J.N., 1998. The use of MRI to quantify multi-phase flow patterns and transitions: an application to horizontal slug flow. Nucl. Eng. Des., 184, pp. 213-228. |
[434] | R. Glowinski, T.W. Pan, T. I. Helsa, D. D. Joseph, and J. Periaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys. 169, 363 (2001). |
[435] | Ribeiro, C.P. and Mewes, D., 2007. The inuence of electrolytes on gas hold-up and regime transition in bubble columns. Chem. Eng. Sci., 62, pp. 4501-4509. |
[436] | Riemer, B., et al., 2002, “Status Report on Mercury Target Related Issues,” Technical Report No. SNS-101060100-TR0006-R00, Oak Ridge National Laboratory, TN. |
[437] | Rightley, P. M. and Lasheras, J. C. 2000 Bubble dispersion and interphase coupling in a free-shear flow. J. Fluid Mech. 412, 21–59. |
[438] | Risso, F. and Fabre, J. (1998). Oscillations and breakup of a bubble immersed in a turbulent field, J. Fluid Mech., 372, 323–355. |
[439] | Risso, F. (2000). The mechanisms of deformation and breakup of drops and bubbles, Multiph. Sci. Technol., 12, 1–50. |
[440] | Robert S. Bernard, Robert S. Maier, Henry T. Falvey. A simple computational model for bubble plumes. Applied Mathematical Modelling 24 (2000) 215-233. |
[441] | Roig, V., Suzanne, C. and Masbernat L. (1993) Measurements in a Two-Phase Mixing Layer. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Elsevier Science, 1993. |
[442] | Roig, V. (1993) Zones de Melange d’ E coulements Diphasiques a Bulles. PhD Thesis, Institut de Mecanique des Fluides de Toulouse, 1993. |
[443] | Roitberg, E., Shemer, L., Barnea, D. Application of a borescope to studies of gas-liquid flow in downward inclined pipes. Int. J. Multiphase Flow Vol. 32 499-516 (2006 a). |
[444] | Roitberg, E., Shemer, L., Barnea, D. Measurements of cross-sectional instantaneous phase distribution in gas–liquid pipe flow. Experimental Thermal and Fluid Science. In press (2006 b). |
[445] | Rolf Hansen, Jesper Madsen, Tron Solberg and Bjørn H. Hjertager. Experimental determination of the bubble size distribution in a square bubble column by the use of IPI. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9–13, 2007. |
[446] | Rothman, D. H. and Zaleski, S. (1997). Lattice-Gas Cellular Automata, Cambridge University Press, Cambridge. |
[447] | R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31, 567 (1999). |
[448] | Ruff, K., ‘‘Formation of Gas Bubbles at Nozzles with Constant Throughput,’’ Chem. Ing. Techn., 44, 1360. 1972. |
[449] | Ruthiya, K.C., van der Schaaf, J., Kuster, B.F.M. and Schouten, J.C., 2006. Inuence of particles and electrolyte on gas hold-up and mass transfer in a slurry bubble column. Int. J. Chem. React. Eng., 4, p. A13. |
[450] | Ruzicka, M.C., Vecer, M.M. and Draho_s, O.J., 2008. Effect of surfactant on homogeneous regime stability in bubble column. Chem. Eng. Sci., 63, pp. 951-967. |
[451] | Ryskin, G. and Leal, L. G. (1984a). Numerical solutions of free-boundary problems in fluid mechanics, Part 1: The finite difference technique, J. Fluid Mech., 148, 1–17. |
[452] | Ryskin, G. and Leal, L. G. (1984b). Numerical solutions of free-boundary problems in fluid mechanics. Part 2: Buoyancy-driven motion of a gas bubble through a quiescent liquid, J. Fluid Mech., 148, 19–35. |
[453] | Saffman, P. G. 1973 On the settling speed of free and fixed suspensions. St. in Appl. Math. LII, no. 2, 115–127. |
[454] | Sandhya Dewangan. Two Phase Flow In Micro Channel, Roll No-11105066. 2007. |
[455] | Sankaranarayanan, K., Shan, X., Kevrekidis, I. G., and Sundaresan, S. (1999). Bubble flow simulations with the lattice Boltzmann method, Chem. Eng. Sci., 54, 4817–4823. |
[456] | Sankaranarayanan, K. (2002). Lattice Boltzmann simulations of gas-liquid bubbly flow. Ph.D. diss., Princeton University. |
[457] | Sankaranarayanan, K. and Sundaresan, S. (2002). Bubble flow simulations with the lattice Boltzmann method, Chem. Eng. Sci., 57, 3521–3542. |
[458] | Sankaranarayanan, K., and Sundaresan, S. Lift force in bubbly suspensions. Chem. Engng. Sci. 57, 3521 (2002). |
[459] | Sankaranarayanan, K., Shan, X., Kevrekidis, I. G., and Sundaresan, S. (2002). Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method, J. Fluid Mech., 452, 61–96. |
[460] | Sankaranarayanan, K., Kevrekidis, I. G., Sundaresan, S., Lu, J., and Tryggvason, G. (2003). A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations, Int. J. Multiph. Flow, 29, 109–116. |
[461] | Sankey, M., Yang, Z., Gladden, L.F., Johns, M.L., Lister, D. and Newling, B., 2009. SPRITE MRI of bubbly flow in a horizontal pipe. J. Magn. Reson., 199, pp. 126-136. |
[462] | Sanyal, J., Vásquez, S., Roy, S. and Dudukovic, M. P. (1999), "Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors", Chemical Engineering Science, vol. 54, no. 21, pp. 5071-5083. |
[463] | Sarah M. Monahan and Rodney O. Fox. Linear Stability Analysis of a Fully 3D Two-Fluid Model for Bubble Columns. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9 – 13, 2007. |
[464] | Sato, A., Aoki, M. and Wananabe, M., 2010. Single bubble rising motion in aqueous solution of electrolyte. J. Fluid Sci. Tech., 5, pp. 14-25. |
[465] | Saxena, S.C., Patel, D., Smith, D.N. and Ruether, J.A., 1988. An assessment of experimental techniques for the measurement of bubble size in a bubble slurry reactor as applied to indirect coal liquefaction. Chem. Eng. Comm., 63, pp. 87-127. |
[466] | S. Chen, D. B. Johnson, P. E. Raad, and D. Fadda, The surface marker and micro cell method, Int. J. Numer. Meth. Fluids 25, 749 (1997). |
[467] | Schladow, S.G. “Bubble Plume Dynamics in a Stratified Medium and the Implications for Water Quality Amelioration in Lakes.” Water Resources Research, Vol. 28, No. 2, pp.313-321, February 1992. |
[468] | Schwaz, M. P. and Turner, W. J. (1988) Applicability of the Standard k-ε turbulence to Gas-Stirred Baths. Appl. Math. Modelling, 12, 273-279, 1988. |
[469] | Schwaz, M. P. (1996) Simulation of Gas Injection into Liquid Melts. Appl. Math. Modelling,20, 41-51, 1996. |
[470] | Senhaji, R. (1993). Qualification globale du fractionnement d’une phase disperse´e de faible viscosite´ en fonction des proprie´tie´s turbulentes de l’e´coulement externe, thesis, Ecole |
[471] | Serizawa, A., I. Katocoka, and I. Michiyoshi, 1975, "Turbulence Structures of Air-water Bubbly Flow," International Journal of MUltiphase Flow, Vol. 2, pp. 221-246. |
[472] | Serizawa A., Kataoka I. and Michiyoshi I. 1975 a Turbulence Structure of Air-Bubbly Flow-I. Measurements Techniques. Int. J. Multiphase Flow 2, pp. 221-233. |
[473] | Serizawa A., Kataoka I. and Michiyoshi I. 1975 b Turbulence Structure of Air-Bubbly Flow-II. Local Properties. Int. J. Multiphase Flow 2, pp. 235-246. |
[474] | Serizawa A., Kataoka I. and Michiyoshi I. 1975 c Turbulence Structure of Air-Bubbly Flow-III. Transport Properties. Int. J. Multiphase Flow 2, pp. 247-259. |
[475] | Serizawa, A., Kataoka, I., and Michiyoshi, I., Int. Journal of Multiphase Flow, 2 (1975), 235. |
[476] | Serizawa, A. and Kataoka, I. (1992). Dispersed Flow, Proc. of the 3rd Int. Workshop on Two-Phase Flow Fundamentals, June 15–19, 1992, London, UK. |
[477] | Serizawa, A., Kataoka, I., Michiyoshi, I., 1992. Phase distribution in bubbly flow. In: Hewitt, G.F., Delhaye, J.M., Zuber, N. (Eds.), Multiphase Science And Technology, vol. 6. Hemisphere Publishing Corporation, New York, pp. 257–301. |
[478] | Sevik, M. and Park, S. H. (1973). The splitting of drops and bubbles by turbulent fluid flow, J. Fluids Eng., 95, 53–60. |
[479] | S. Guet, G. Ooms, and R. V. A. Oliemans, “Simplified two-fluid model for gas-lift efficiency predictions,” AIChE J. 51, 1885 (2005). |
[480] | Shabbir, A. and George, W. (1994). Experiments on a round turbulent buoyant plume. J.Fluid Mech.275:1-32 |
[481] | Sheng, Y.Y., Irons, G.A., 1992. Measurements of The Internal Structure of Gas- Liquid Plumes. Metallurgical and Materials Transactions Vol. 23-B, 779-788. |
[482] | Sheng, Y. Y. and Irons, G. A. (1993) Measurement and Modeling of Turbulence in the Gas/Liquid Two-Phase Zone During Gas Injection. Metallurgical Trans. B, 24B, 695-705, 1993. |
[483] | Sheng, Y. Y. and Irons, G. A. (1995) The Impact of Bubble Dynamics on the Flow in Plumes of Ladle Water Models., Metallurgical Trans. B, 26B, 625-635, 1995. |
[484] | Sideman, S., and G. Hirsch, ‘‘Direct Contact Heat Transfer with Change of Phase,’’ AIChE J., 11, 1019. 1965. |
[485] | Shoichi Hara, Michiaki Ikai, Sadahiro Namie 1982. Fundamental Study on an Air Bubble Type of Oil Boom. Trans. Ship-making Society of Kansai-Japan 1982. |
[486] | S. Homma, J. Koga, S. Matsumoto, and G. Tryggvason, Pinch-off dynamics of jet breakup in liquid–liquid systems, in Proceedings of the ASME FEDSM00 Fluids Engineering Division Summer Meeting, Boston, MA, June 11–15, 2000. |
[487] | Sjoberg, A. Stromningshastigheter kring luft-bubbelridat athetshomogentoch stillastaendevatten. (In Swedish), Chalmers Institute of Technology, Hydraulics Division. Report No. 39, (1967). |
[488] | Simiano, M. 2005 Experimental investigation of large-scale three dimensional bubble plume dynamics. Doctoral dissertation, ETH No. 16220, Zurich, Switzerland. |
[489] | Simiano, M., Zboray, R., de Cachard, F., Lakehal, D. and Yadigaroglu, G. 2006 Comprehensive experimental investigation of the hydrodynamics of large-scale, three-dimensional bubble plumes. Intl J. Multiph. Flow 18 (32), 1160–1181. |
[490] | S K Robinson. Coherent Motion in the Turbulent Boundary Layer. Annual Review of Fluid Mechanics. Vol. 23: 601-639 (Volume publication date January 1991). DOI: 10.1146/annurev.fl.23.010191.003125. |
[491] | S. K. Wang, S. J. Lee, O. C. Jones and R. T. Lahey, Turbulence Structure and Phase Distribution Measurements in Bubbly Two-phase Flows, International Journal of Multiphase Flow, 13 (1987) 327-343. |
[492] | S. Levy, “Prediction of two-phase pressure drop and density distributor from mixing length theory,” J. Heat Transfer 85, 137 (1963). |
[493] | Smagorinsky, J. (1963) General Circulation Experiments with the Primitive Equations. Mon. Weather Rev., 91 (3), 99-165, 1963. |
[494] | S. Mortazavi, Computational Investigation of Particulated Two-Phase Flows, Ph.D. dissertation (University of Michigan, 1995). |
[495] | S. Mortazavi and G. Tryggvason, A numerical study of the motion of drops in Poiseuille flow. 1. Lateral migration of one drop, J. Fluid Mech. 411, 325 (2000). |
[496] | S.-M. Pan, Y.-H. Ho, W.-S. Hwang, Three-dimensional fluid flow model for gas-stirred ladles, J. Mater. Engrg. Performance 6 (3) (1997) 311-318. |
[497] | SNYDER, W. and LUMLEY, J. 1971 Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech. 48, 41–71. |
[498] | Soga, C. L. M., and Rehmann, C. R. (2004). Dissipation of turbulent kinetic energy near a bubble plume. Journal of Hydraulic Engineering. 130 (5), 441– 449. |
[499] | Sokolichin, A. and Eigenberger, G. (1994), "Gas-liquid flow in bubble columns and loop reactors: Part I. Detailed modelling and numerical simulation", Chemical Engineering Science, vol. 49, (24B) no. 24, pp. 5735-5746. |
[500] | Becker, S., Sokolichin, A. and Eigenberger, G. (1994), "Gas-liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations", Chemical Engineering Science, vol. 49, No. 24, pp. 5747-5762. |
[501] | Sokolichin, A. and Eigenberger, G. (1999) Applicability of the standard k-ε turbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations, Chemical Engineering Science 54, 2273-2284. pp.2273-2284. |
[502] | Becker, S., De Bie, H. and Sweeney, J. (1999), "Dynamic flow behaviour in bubble columns", Chemical Engineering Science, vol. 54, no. 21, pp. 4929-4935. |
[503] | Sokolichin, A., Eigenberger, G., and Lapin, A., 2004. Simulation of buoyancy driven bubbly flow: Established simplifications and open questions, AIChE Journal, 50(1), 24-45 |
[504] | Sokolichin, A., Mathematische Modellbildung und numerische Simulation von Gas-Fl¨ussigkeits- Blasenstromungen. Habilitationsschrift, Universit¨at Stuttgart, 2004. |
[505] | Sokolichin, A., G. Eigenberger and A. Lapin. Simulation of Buoyancy Driven Bubbly Flow: Established Simplifications and Open Questions. Journal Review. 2004 American Institute of Chemical Engineers AIChE J, 50: 24–45. AIChE Journal 2004 Vol. 50, No. 1. |
[506] | S. Osher and R. P. Fedkiw, Level set methods: An overview and some recent results, J. Comput. Phys. 169, 463 (2001). |
[507] | S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys. 100, 25 (1992). |
[508] | S. O. Unverdi and G. Tryggvason, Computations of multi-fluid flows, Physica D 60, 70 (1992). |
[509] | SPELT, P. D. M. and BIESHEUVEL, A. 1997 On the motion of gas bubbles in homogeneous isotropic flow. J. Fluid Mech. 336, 221–244. |
[510] | S. Popinet and S. Zaleski, A front-tracking algorithm for accurate representation of surface tension, Int. J. Numer. Meth. Fluids 30, 775 (1999). |
[511] | Squires, K. and Eaton, J. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2, 1191–1203. |
[512] | Sridhar, G. and Katz, J., 1999, Effect of entrained bubbles on the structure of vortex rings. Journal of Fluid Mechanics, 397, 171 –202. |
[513] | Stevenson, P., Sederman, A.J., Mantle, M.D., Li, X. and Gladden, L.F., 2010. Measurement of bubble size distribution in a gas-liquid foam using pulsed-field gradient nuclear magnetic resonance. J. Colloid Interface Sci., 352, pp. 114-120. |
[514] | Steven L. Ceccio. Friction Drag Reduction of External Flows with Bubble and Gas Injection. Annual Review of Fluid Mechanic. Vol. 42: 183-203. 2010. First published online as a Review in Advance on August 18, 2009. DOI: 10.1146/annurev-fluid-121108-145504 |
[515] | S.T. Revankar, M. Ishii, Local interfacial measurement in bubbly flow, International Journal of Heat and Mass Transfer 35 (1992) 913–925. |
[516] | Succi, S. (2001). The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, New York. |
[517] | Sudhoff, B., M. Plischke, and P.-M. Weinspach, ‘‘Direct Contact Heat Transfer with Change of Phase-Condensation or Evaporation of a Drobble,’’ Ger. Chem. Eng., 5, 24. 1982. |
[518] | Sune Lomholt and Martin R. Maxey. Force-coupling method for particulate two-phase flow: Stokes flow. Journal of Computational Physics Volume 184, Issue 2, 20 January 2003, Pages 381–405. |
[519] | Sun T. Y. and Faeth G. M. 1986 a. Structure of Turbulent Bubbly Jets-I. Methods and Centerline properties. Int. J. Multiphase Flow 12, pp. 99-114. |
[520] | Sun T. Y. and Faeth G. M. 1986 b. Structure of Turbulent Bubbly Jets-II. Phase Property profiles. Int. J. Multiphase Flow 12, pp. 115-126. |
[521] | Sun, X., Kuran, S., Ishii, M., 2004. Cap bubbly-to-slug flow regime transition in a vertical annulus. Experiments in Fluids 37, 458–464. |
[522] | Szekely, J., Lehner, T., Chang, C. W., 1979. Flow phenomena, mixing and mass transfer in argon-stirred ladles. Ironmaking and Steelmaking 6, 285–293. |
[523] | X. Sun, S. Paranjape, S. Kim, B. Ozar, and M. Ishii, “Liquid velocity in upward and downward air-water flows,” Ann. Nucl. Energy 31, 357 (2004). |
[524] | X. Sun, S. Paranjape, M. Ishii, and J. Uhle, “LDA measurement in airwater downward flow,” Exp. Therm. Fluid Sci. 28, 317 (2004). |
[525] | X. Sun, S. Paranjape, S. Kim, H. Goda, M. Ishii, and J. M. Kelly, “Local liquid velocity in vertical air-water downward flow,” ASME Trans. J. Fluids Eng. 126, 539 (2004). |
[526] | Suo and Griffith, 1964 M. Suo, P. Griffith, “Two phase flow in capillary tubes, Journal of Basic Engineering” 86 (1964), pp. 576_582. |
[527] | Szekely, J., Carlson, G. and Helle L. 1988. Ladel Metallurgy. Springer. Berlin. |
[528] | Takagi, S. and Matsumoto, Y. 1994 Three-dimensional deformation of a rising bubble. Proceedings of the German-Japanese Symposium on Multiphase Flow (KfK 5389, 1994), p. 499. |
[529] | TAKAGI, S., PROPERETTI, A. and MATSUMOTO, Y. 1994 Drag coefficient of a gas bubble in an axisymmetric shear flow. Phys. Fluids 6, 3186–3188. |
[530] | Takagi, S. and Matsumoto, Y., 2011. Surfactant effects on bubble motion and bubbly flows. Annual Review of Fluid Mechanics, Vol.43 (2011), pp.615-636. |
[531] | Takashi Goshima and Koichi Terasaka. Behavior of bubble from a coaxial nozzle in capillary tube into flowing liquid. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9 – 13, 2007. |
[532] | Tang, C. and T.J. Heindel, 2006. Estimating Gas Holdup via Pressure Difference Measurements in a Cocurrent Bubble Column. International Journal of Multiphase Flow, 32: 850-863. |
[533] | Tayali, N.E. and Bates, C.J., 1990. Particle sizing techniques in multiphase flows: a review. Flow. Meas. Instrum., 1, pp. 77-103. |
[534] | Taylor, G. I. (1932). The viscosity of a fluid containing small drops of another fluid, Proc. R. Soc. Lond. A, 138, 41–48. |
[535] | Taylor, G. I. (1934). The formation of emulsions in definable fields of flow, Proc. R. Soc. Lond. A, 146, 501–523. |
[536] | Taylor Sir Geofffery. The action of a Surface Current Used as a Breakwater, Proc. Royal Society, A., Vol. 231, 1955, p. 466-478. |
[537] | T. Deb Roy, A.K. Majumdar, D.B. Spalding, Numerical prediction of recirculation flows with free convection encountered in gas-agitated reactors, App. Math. Modelling 2 (1978) 146-150. |
[538] | Tekeli S, Maxwell W (1978) Behavior of air bubble screens. Civil Engineering studies, Hydraulic Research series No 33. University of Illinois at Urbana, Champaign |
[539] | Terasaka, K., W.-Y. Sun, T. Prakoso, and H. Tsuge, ‘‘Measurement of Heat Transfer Coefficient for Direct-Contact Condensation during Bubble Growth in Liquid,’’ J. Chem. Eng. Jpn., 32, 594. 1999. |
[540] | Terasaka, K., T. Prakoso, W.-Y. Sun, and H. Tsuge, ‘‘Two-Phase Bubble Formation with Condensation at Nozzle Submerged in Immiscible Liquid,’’ J. Chem. Eng. Jpn., 33, 113. 2000. |
[541] | Theofanous T. G. and Sallivar J. 1982. Turbulence in Two-Dispersed Flow. Journal of Fluid Mechanics. 116, pp. 343-362. |
[542] | T. Hibiki, M. Ishii, Z. Xiao, “Axial interfacial area transport of vertical bubble flows,” Int. J. Heat Mass Trans, vol. 44, pp 1869–1888, 2001. |
[543] | Thomas H. Van Den Berg, Stefan Luther, Irene M. Mazzitelli, Judith M. Rensen, Federico Toschi and Detlef Lohse. Turbulent Bubbly Flow. Journal of Turbulence. Volume 7, No. 14, 2006 |
[544] | Tim Colonius, Rob Hagmeijer, Keita Ando, and Christopher E. Brennen. Statistical equilibrium of bubble oscillations in dilute bubbly flows. Physics of fluids 20, 040902. (2008). American Institute of Physics. (DOI: 10.1063/1.2912517). |
[545] | Topham, D. R. 1974. The Hydrodynamic Aspects of the Behavior of Oil Released Under Sea Ice. Int. Rep. Dept. Electrical Engng, Univ. Alberta. |
[546] | Tomiyama, A., Zun, I., Higaki, H., Makino, Y. and Sakaguchi, T., “A Three- Dimensional Particle Tracking Method for Bubbly Flow Simulation”, Nuclear Eng. Des., 175, pp.77-86 (1997). |
[547] | Tomiyama, A., “Struggle with Computational Bubble Dynamics”, on CD-ROM Proc. of the Third International Conference on Multiphase Flow, ICMF’ 98 Lyon. France, June 8-12, 1998, also in Multiphase Science and Technology, 10, 4 (1998). |
[548] | Tomiyama, A., Miyoshi, K., Tamai, H. Zun, I. and Sakaguchi, T., “A Bubble Tracking Method for the Prediction of Spatial-Evolution of Bubble Flow in a Vertical Pipe”, on CD-ROM of 3rd Int. Conf. Multiphase Flow, ICMF’98-Lyon, pp.1-8 (1998). |
[549] | Tomiyama, A. and Shimada, N., “A Numerical Method for Bubbly Flow Simulation based on a Multi-Fluid Model”, Trans. ASME, J. of Pressure Vessel Technology, 123, 4, pp.510-516 (2001). |
[550] | Tomiyama, A. and Shimada, N., “(N+2)-Field Modeling for Bubbly Flow Simulation”, Computational Fluid Dynamics J., 9, 4, pp.418-426 (2001). |
[551] | Tomiyama, A., Tamai, H., and Hosokawa, S., “Velocity and Pressure Distributions around Large Bubbles rising through a Vertical Pipe”, on CD-ROM of 4th Int. Conf. Multiphase Flow, New Orleans, USA, pp.1-12 (2001). |
[552] | Tomiyama, A., Celata, G. P., Hosokawa, S. and Yoshida, S., “Terminal Velocity of Single Bubbles in Surface Tension Force Dominant Regime”, Int. J. Multiphase Flow, 28, 9, pp.1497-1519, (2002), also on CD-ROM of 39th European Two-Phase Flow Group Meeting, Aveiro, Portugal, F-2, pp.1-8 (2001). |
[553] | Tomiyama, A., Yoshida, S. and Hosokawa, S., “Surface Tension Force Dominant Regime of Single Bubbles rising through Stagnant Liquids”, on CD-ROM of 4th UK-Japan Seminar on Multiphase Flow, Bury St. Edmunds, UK pp.1-6 (2001). |
[554] | Tomiyama, A., Nakahara, Y and Morita, G., “Rising Velocities and Shapes of Single Bubbles in Vertical Pipes”, on CD-ROM of 4th Int. Conf. Multiphase Flow, New Orleans, Paper No. 492, pp.1-12 (2001). |
[555] | Tomiyama, A., Nakahara, Y., Adachi, Y. and Hosokawa, S., “Interface Tracking Simulation of Large Bubbles in Vertical Conduits”, on CD-ROM of 5th JSME-KSME Fluids Eng. Conf., Nagoya, Japan, 1-6 (2002) to be published. |
[556] | Tomiyama, A., Adachi, Y., Nakahara, K. and Hosokawa, S., “Shapes and Rising Velocities of Single Bubbles rising through an Inner Subchannel”, Proc. 3rd Korea-Japan Symposium on Nuclear Hydraulics and Safety, Kyeongju, Korea, pp.1-6 (2002). |
[557] | Tomiyama, A., Tamai, H., Zun, I. and Hosokawa, S., “Transverse Migration of Single Bubbles in Simple Shear Flows”. Chemical Engineering Science, Vol. 57, 11, pp.1849-1858 (2002). |
[558] | Tomiyama, A., “Reconsideration of Three Fundamental Problems in Modeling Bubbly Flows”, Proc. JSME-KSME Fluid Eng. Conf. Pre-Symposium, Nagoya, pp.47-53 (2002). |
[559] | A. Tomiyama. Report on Single Bubbles In Stagnant Liquids And In Linear Shear Flows (2002). |
[560] | T. Oshinowo and M. E. Charles, “Vertical two-phase flow. II. Holdup and pressure drop,” Can. J. Chem. Eng. 52, 438 (1974). |
[561] | TSUJI, Y. andMORIKAWA, Y. 1982 Ldv measurements of an air-solid two-phase flow in a horizontal pipe. J. Fluid Mech. 120, 385–409. |
[562] | TSUJI, Y., MORIKAWA, Y. and SHIOMI, H. 1984 Ldv measurements of an air-solid two-phase flow in a vertical pipe. J. Fluid Mech. 139, 417–434. |
[563] | Tryggvason, G., B. Bunner, A. Esmaeeli, and S. Mortazavi, “Direct Numerical Simulations of Dispersed Flows,” Proc. of Third Int. Conf. Multiphase Flow, ICMF 1998, Lyon, France (Jun. 8–12, 1998). |
[564] | T. Yabe, Interface capturing and universal solution of solid, liquid and gas by CIP method, in Proceedings of the High-Performance Computing of Multi-Phase Flow, Tokyo, July 18–19, 1997. |
[565] | T. Yabe, F. Xiao, and T. Utsumi, The constrained interpolation profile (CIP) method for multiphase analysis, J. Comput. Phys. 169, 556 (2001). |
[566] | Uchiyama, T., and Fukase, A., 2005, “Three-Dimensional Vortex Method for Gas-Particle Two-Phase Compound Round Jet,” ASME J. Fluids Eng., 127, pp. 32–40. |
[567] | Uchiyama, T., and Degawa, T., 2006, “Numerical Simulation for Gas-Liquid Two-Phase Free Turbulent Flow based on Vortex in Cell Method,” JSME Int. J., Ser. B, 49, pp. 1008–1015. |
[568] | Uchiyama, T., and Naruse, M., 2006, “Three-Dimensional Vortex Simulation for Particulate Jet Generated by Free Falling Particles,” Chem. Eng. Sci., 61, pp. 1913–1921. |
[569] | Uchiyama, T., and Degawa, T., 2008, “Numerical Simulation of Plane Bubble Plume by Vortex Method,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 222, pp. 1193–1201. |
[570] | Uchiyama, T., and Yagami, H., 2008, “Numerical Simulation for the Collision Between a Vortex Ring and Solid Particles,” Powder Technol., 188, pp. 73– 80. |
[571] | Unverdi, S. O. and Tryggvason, G. 1992a A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25-37. |
[572] | Unverdi, S. O. and Tryggvason, G. 1992b Computations of multi-fluid flows. Physica D 60, 70-83. |
[573] | Unverdi, S. O. and Tryggvason, G. (1992). A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 25–37. |
[574] | VAN WIJNGAARDEN, L. 1998 On pseudo turbulence. Theor. Comput. Fluid Dyn. 10, 449–458. |
[575] | Van den Berg, T. H., Luther, S., Mazzitelli, M., Rensen, J. M., Toschi, F. and Lohse, D. 2006. Turbulent bubbly flow. J. Turbul. 7 (14), 1–12. |
[576] | Van den Hengel, E., 2004. Multi-level modeling of gas-liquid two-phaseflow in a bubble column. Ph.D. thesis, University of Twente. |
[577] | Vazquez, A., Sanchez, R.M., Salinas-Rodrigguez, E., A., S. and Manasseh, R., 2005. A look at three measurement techniques for bubble size determination. Exp. Therm. Fluid Sci., 30, pp. 49-57. |
[578] | Vincenzo Armenio and Virgilio Fiorotto. The importance of the forces acting on particles in turbulent flows. AIP Publishing. Physics of Fluids. Volume 13, Issue 8. 2437 (2001); http://dx.doi.org/10.1063/1.1385390. American Institute of Physics. |
[579] | Wain D, Rehmann C (2005) Eddy diffusivity near bubble plumes. Water Resour Res 41:W09409. |
[580] | Walter, J. F. and Blanch, H. W. (1986). Bubble break-up in gas-liquid bioreactors: Break-up in turbulent flows, Chem. Eng. J., 32, B7–B17. |
[581] | Wanchoo, R. K., ‘‘Condensation of Single Two-Phase Bubbles in an Immiscible Liquid: Heat Transfer Characteristics,’’ Chem. Eng. Comm., 105, 99. 1991. |
[582] | Wanchoo, R. K., S. K. Sharma, and G. K. Raina, ‘‘Drag Coefficient and Velocity of Rise of a Single Collapsing Two-Phase Bubble,’’ AIChE J., 43, 1955. 1997. |
[583] | Wang, F., Marashdeh, Q., Fan, L.S. and Warsito, W., 2010. Electrical capacitance volume tomography: design and applications. Sensors, 10, pp. 1890-1917. |
[584] | Wang, L. and Maxey, M., 1993 (or a), Settling velocity and Concentration distribution of heavy particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 256, 27-68. |
[585] | Wang, L. and Maxey, M., 1993 (or b). The motion of microbubbles in a forced isotropic and homogeneous turbulence. Applied Scientific Research, 51, 291–296. |
[586] | Wang, S. K., Lee, S., Jones, O., and Lahey, R., 1990, “Statistical Analysis of Turbulent Two-Phase Pipe Flow,” ASME J. Fluids Eng., 112, pp. 89–95. |
[587] | Wang, T. and Wang, J., 2007. Numerical simulation of gas-liquid mass transfer in bubble column with a CFD-PBM coupled model. Chem. Eng. Sci., 62, pp. 7107- 7118. |
[588] | Wee, D., and Ghoniem, A. F., 2006, “Modified Interpolation Kernels for Treating Diffusion and Remeshing in Vortex Methods,” J. Comput. Phys., 213, pp. 239–263. |
[589] | Weissenborn, P.K. and Pugh, R.J., 1996. Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence. J. Colloid Interf. Sci., 184, pp. 550-563. |
[590] | WENDY C. SANDERS, ERIC S. WINKEL, DAVID R. DOWLING, MARC PERLIN and STEVEN L. CECCIO Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. journal of Fluid Mechanics / Volume 552 / April 2006, pp 353- 380. DOI: http://dx.doi.org/10.1017/S0022112006008688 (About DOI), Published online: 29 March 2006. |
[591] | W. Tauber, S. O. Unverdi, and G. Tryggvason, The nonlinear behavior of a sheared immiscible fluid interface. Physics of Fluids. Volume 14, Number 8 August 2002. |
[592] | W. Tauber and G. Tryggvason, Direct Numerical Simulations of primary breakup, Comput. Fluid Dyn. 9, (2000). |
[593] | Wu, Q., Kim, S., Ishii, M., Beus, S.G., 1998. One-group interfacial area transport in vertical bubbly flow. International Journal of Heat and Mass Transfer, Vol. 41, 1103– 1112. |
[594] | Xia Wang and Xiaodong Sun. A Numerical Study of Upward Bubbly Flow Using Interfacial Area Transport Equation. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9 – 13, 2007. |
[595] | Xue H. Zhang, et al “Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solution” Langmuir 2006, 22, 5025-5035. |
[596] | Yang, C. and Lei, U., 1998. The role of the turbulent scales in the settling velocity of heavy particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 371, 179-205. |
[597] | Yang and Shieh, 2001C-Y. Yang, C-C. Shieh, “Flow pattern of air_water and two-phase R-134a in small circular tubes”,Int. J. Multiphase Flow, 27 (7) (2001), pp. 1163_1177. |
[598] | Yao, W. and Morel, C. Volumetric interfacial area prediction in upward bubbly two-phase flow. Int. J. Heat Mass Transfer, Vol. 47, 307-328 (2004). |
[599] | Y. J. Jiang, A. Umemura, and C. K. Law, An experimental investigation on the collision behavior of hydrocarbon droplets, J. Fluid Mech. 234, 171 (1992). |
[600] | Yoshihito Sasada and Koichi Terasaka. Submilli-bubble dispersion from a novel gas distributor into water. International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, July 9 – 13, 2007. |
[601] | Yu PYW; Varty RL (1988) Laser-Doppler measurement of the velocity and diameter of bubbles using the triple-peak technique. Int J Multiphase Flow 14: 765-776 |
[602] | P.-W. Yu, S. L. Ceccio, and G. Tryggvason, The collapse of a cavitation bubble in shear flows—a numerical study, Phys. Fluids 7, 2608 (1995). |
[603] | Y. Yang and G. Tryggvason, Dissipation of energy by finite amplitude surface waves, Comput. Fluids 27, 829 (1998). |
[604] | Zahradnk, J., Fialova, M., Ruzicka, M., Draho_s, J., Kastanek, F. and Thomas, N.H., 1997. Duality of the gas-liquid flow regimes in bubble column reactors. Chem. Eng. Sci., 1997, pp. 3811-3826. |
[605] | Zieminski, S.A. and Whittemore, R.C., 1971. Behavior of gas bubbles in aqueous electrolyte solutions. Chem. Eng. Sci., 26, pp. 509-520. |
[606] | Zun, I., Kljenak, I. and Moze, S., “Space-Time Evolution of the Nonhomogeneous Bubble Distribution in Upward Flow”, Int. J. Multiphase Flow, 19, 1, pp.151-172 (1993). |